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Single-cell transcriptomics across 2,534 
microbial species reveals functional 
heterogeneity in the rumen microbiome

Minghui Jia1,2,3,9, Senlin Zhu1,2,3,9, Ming-Yuan Xue1,2,8,9, Hongyi Chen1,2, 
Jinghong Xu1,2, Mengdi Song    4,5,6, Yifan Tang1,2, Xiaohan Liu1,2, Ye Tao7, 
Tianyu Zhang    4,5,6, Jian-Xin Liu    1,2, Yongcheng Wang    4,5   & 
Hui-Zeng Sun    1,2,3 

Deciphering the activity of individual microbes within complex communities 
and environments remains a challenge. Here we describe the development of 
microbiome single-cell transcriptomics using droplet-based single-cell RNA 
sequencing and pangenome-based computational analysis to characterize 
the functional heterogeneity of the rumen microbiome. We generated a 
microbial genome database (the Bovine Gastro Microbial Genome Map) as a 
functional reference map for the construction of a single-cell transcriptomic 
atlas of the rumen microbiome. The atlas includes 174,531 microbial cells and 
2,534 species, of which 172 are core active species grouped into 12 functional 
clusters. We detected single-cell-level functional roles, including a key role 
for Basfia succiniciproducens in the carbohydrate metabolic niche of the 
rumen microbiome. Furthermore, we explored functional heterogeneity 
and reveal metabolic niche trajectories driven by biofilm formation 
pathway genes within B. succiniciproducens. Our results provide a resource 
for studying the rumen microbiome and illustrate the diverse functions 
of individual microbial cells that drive their ecological niche stability or 
adaptation within the ecosystem.

Over the years, microbiome research has achieved tremendous  
advancements driven by culture-independent meta-omics approa
ches1–3. Metagenomic binning techniques have been a milestone 
in the exploration of unculturable microbial genomes (that is, 
metagenome-assembled genomes (MAGs))4,5, allowing for a deeper 
understanding of the functions of complex microbial environments, 
such as the human gut6,7, rumen8 and ocean9. However, the discovery 
of functional redundancy10 and microbial heterogeneity11 are major 

challenges in obtaining groundbreaking insights. New approaches 
are needed to address the issues of resolution (single-cell functional 
heterogeneity), effectiveness (RNA functionality) and accuracy (high 
throughput) in microbial studies, rendering them crucial for the next 
era of microbial research.

Single-cell microbiological techniques have emerged as potential 
solutions. For instance, single-cell genomic approaches have facilitated 
the identification of genomic information for revealing microbial 
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The to-date largest holistic collection—de-replicated microbial 
genomes identified by Watson29—was retrieved from 33,813 public 
rumen MAGs. Our BGMGM obtained an 80% increase in de-replicated 
putative species-level genomes (13,572 versus 7,533), among which 
high-quality genomes were elevated by 111% from 2,696 to 5,676. The 
high proportion of high-quality genomes in the BGMGM guarantees 
further use in single-cell transcriptomics research.

To expand our understanding of rumen microbial functions, we 
constructed a catalogue of protein-coding genes from the BGMGM. Col-
lectively, 25,898,014 genes were predicted from 13,572 non-redundant 
genomes. After gene dereplication with a 95% average nucleotide 
identity cutoff, 23,755,235 genes (91.7%) were retained. We discovered 
18,046,712 (76% of the total non-redundant genes) functional genes 
annotated by at least one database (Fig. 2b and Extended Data Fig. 2a). 
Functional annotation in the Clusters of Orthologous Genes (COG) 
database spans 22 functional categories, with the classifications of 
carbohydrate transport and metabolism, cell wall/membrane/enve-
lope biogenesis and translation being the most enriched (Fig. 2c). 
In total, 3,112 (22.9%) near-complete genomes (including 3,065 Bac-
teria genomes and 47 Archaea genomes) were selected with high 
completeness (mean ± s.d. = 96.10 ± 2.49%) and low contamination 
(mean ± s.d. = 0.43 ± 0.47%). We visualized them in Fig. 2d and Extended 
Data Fig. 2b, respectively. The high-quality genome set, large number 
of annotated genes and high gene annotation rate provided a solid 
basis for microbial pangenome mapping and functional investigation 
of single-cell transcriptomic data.

The rumen microbiome single-cell functional landscape
To annotate the microbiome transcriptomics of the complex rumen 
microbial ecosystem using scRNA-seq, we developed a strategy for 
microbial pangenome mapping and functional cluster identification 
(Extended Data Fig. 3a). We captured more than 200,000 rumen micro-
bial cells using our previously developed droplet-based single-microbe 
RNA-seq method17 with optimized random primers and a microfluidic 
barcoding platform. After relatively strict quality control (see Meth-
ods), 174,531 high-quality cells were retained, with a median number 
of 4,611 unique molecular identifiers and 182 unique genes per cell 
(Extended Data Fig. 3b). The large cell numbers and unique gene num-
bers (288,268) ensure the applicability of MscT to microbiome inves-
tigation. After normalization and a series of benchmarking (Extended 
Data Fig. 4a), we performed clustering analysis with batch effect cor-
rection on all 174,531 cells and identified 12 functional clusters (Fig. 3a). 
These functional clusters were annotated based on the biological func-
tions of the specifically expressed genes (Supplementary Table 5). For 
example, cells in the HSP90+ high metabolic activity cell (HMAC) func-
tional cluster specifically expressed the CowSGB-6222-c11-2 gene, which 
encodes the HSP90 protein associated with ATP utilization, suggesting 
that this functional cluster possesses metabolic activity. Meanwhile, 
the proportion of metabolically active genes in the cells of this cluster 
is relatively high compared with that of other cells (Supplementary 
Table 6); therefore, we named this functional cluster HSP90+ HMACs 
(other functional clusters were named similarly, as detailed in Supple-
mentary Tables 5 and 6). The 12 functional clusters represent a classifi-
cation of rumen microbes at the single-cell RNA level, with high overlap 
between different samples (Extended Data Fig. 4b), demonstrating 
the robustness and reproducibility of the functional cluster analysis 
strategy. Due to redundancy in most microbial functions30, taxonomic 
analysis is not sufficient to describe the functional heterogeneity that 
exists31. Therefore, a functional group-centred approach to microbial 
ecology research has been proposed32. According to current research, 
the functional groups exhibit stability33, dynamic equilibrium34 and 
complex interactions35, similar to the functional clusters we identified.

Unlike other microbial scRNA-seq studies that explore commu-
nities with known members14–16, our study investigated previously 
unknown species in a complex community. MscT identified 2,534 

members12. Nevertheless, they are not able to identify active func-
tions and expressed genes13. Detecting individual gene expression 
patterns using single-cell RNA sequencing (scRNA-seq) is essential 
for elucidating the mechanisms underlying such heterogeneity in 
microbial cells14. Many efforts have been made in microbial scRNA-seq, 
including prokaryotic expression profiling by tagging RNA in situ 
and sequencing (PETRI-seq)14, microbial split-pool ligation transcrip-
tomics (microSPLiT)15, eukaryotic bacterial droplet-based scRNA-seq  
(BacDrop)16 and droplet-based high-throughput single-microbe 
RNA-seq (smRandom-seq)17. However, these methods focus primar-
ily on cellular heterogeneity in simple synthetic microbial commu-
nities with known members. There remains a huge technical and 
knowledge gap in exploring the active functional roles of specific 
organisms in complex microbial environments with a tremendous 
number of unknown and unculturable members. Therefore, better 
tools for microbiome scRNA-seq that can be applied to uncultivable 
or under-characterized microbial ecosystems are urgently needed.

The rumen microbiome—one of the most complex and under- 
investigated microbial habitats—is responsible for degrading inedible 
plant biomass to produce high-quality protein products (meat and 
milk) while generating considerable environmental problems18. The 
rumen microbiome represents a complex environment with limited 
pangenome information and transcriptional data. Due to its complex 
taxonomy, large functional redundancy and strict anaerobic nature, 
the current understanding of the rumen microbiome is still limited and 
is restricted to the Hungate1000 Project19 and several metagenomic 
binning studies8,20. In this Resource, using the rumen microbiome as 
an ideal model, we create a rumen microbial pangenome reference 
(the Bovine Gastro Microbial Genome Map (BGMGM)) by employing 
rumen metagenomic sequencing of dairy cows and collecting publicly 
available cultured rumen microbial genomes and MAGs. By integrating 
random primer-based droplet scRNA-seq and BGMGM-based compu-
tational analysis, we develop microbiome single-cell transcriptomics 
(MscT) to reveal the single-cell functionalities of rumen microbiota. 
This study will hold innovative significance not only for microbiologi-
cal research techniques but also for addressing global issues such as 
ecological dynamics, enzyme resource exploration and large-scale 
industrial production of lignocellulosic biofuels.

Results
Reference pangenomes of the rumen microbiome
We constructed a bovine gastrointestinal microbial genome database 
from public resources8,19–27 (see Methods) and newly sequenced samples 
(Fig. 1 and Extended Data Fig. 1) and named it the BGMGM. The BGMGM 
comprises 2,311 animal samples covering ten different gastrointesti-
nal segments, with the rumen being the most dominant (more than 
1,480 samples and 29,225 genomes) (Supplementary Table 1). This map 
contains 47,241 microbial genomes (Supplementary Tables 2 and 3), 
including 410 cultured genomes and 46,831 MAGs, which successfully 
met strict quality control criteria (see Methods). After genome derep-
lication with a 95% average nucleotide identity cutoff, a total of 13,572 
non-redundant genomes were retained, including 5,676 high-quality 
genomes and 7,896 medium-quality genomes. High-quality genomes 
displayed significantly higher N50 values and fewer scaffolds than 
medium-quality genomes, with a quality score (QS) of ≥75 (P < 0.001 
for N50 and P < 0.001 for scaffolds; Fig. 2a), supporting sustained 
results even when compared with the relatively high-quality parts of 
medium-quality genomes.

After utilizing the Genome Taxonomy Database Toolkit28 (GTDB-Tk 
version 2.3.2) for species annotation, 7,545 (55.6%) genomes were 
identified as known species. Notably, most of these genomes were 
predominantly from the phylum Bacillota (4,181), followed by Bacte-
roidota (1,916) and Pseudomonadota (328) (Supplementary Table 4). 
Compared with large-scale and well-established gut microbial pange-
nomes in humans6,7, bovine gastrointestinal studies are still scarce. 
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species (1,849 were known). High species diversity allows for a more 
comprehensive understanding of rumen microbial activity. We defined 
species that contained more than 100 cells as core active microbial 
species (Fig. 3b) and explored the distribution of 172 such species in 
the 12 functional clusters. We found that 164 core active microbial 
species were distributed in more than one functional cluster and 38 
core active microbial species existed in any one functional cluster. 
Certain species were preferentially involved in a particular functional 
cluster. For example, the cells of Desulfovibrio sp016284885 were pre-
dominantly identified as sulfur metabolic cells, whereas the cells of 
Sodaliphilus sp900318205 were predominantly identified as replication 
protein A-positive (RPA+) lipid metabolic cells (Fig. 3c). The distribution 
patterns demonstrated stable performance in classifying different 
microbial species.

To summarize, here we benchmarked MscT in a complex micro-
bial community and identified 12 functional clusters with distinct 
transcriptomic patterns, which advances our understanding of uncul-
tivable microbial ecosystems and offers a high-resolution approach to 
exploring the active functions of unknown microbial environments 
systematically and holistically.

Heterogeneity and interaction of functional clusters
After identifying the 12 functional clusters from the MscT data, we 
further characterized the heterogeneity of the biological pathways 
in which their marker genes were involved. We present the biologi-
cal processes/structures of 23 marker genes, as characterized by 
co-upregulation of genes involved in: (1) carbohydrate transport and 
metabolism; (2) replication, recombination and repair; (3) peptide 
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transportation; (4) signal transduction and metabolism; (5) lipid 
transport and metabolism; (6) transcription; (7) formate/nitrite trans-
portation; (8) proliferation, stress response and ribosome biogen-
esis; (9) modification, protein turnover and chaperones; (10) energy 
and sulfur metabolism; (11) signal transduction mechanisms; (12) 
SecY translocase; and (13) inorganic ion transportation (Fig. 4a and  
Supplementary Table 5). Based on the annotated marker genes for 
each functional cluster, we present the specific biological pathways 
(Fig. 4b). For instance, sulfur metabolic cells specifically expressed the 
genes CowSGB-4309-c57-3 and CowSGB-4309-c116-5, which encode two 
important proteins (AprA and DsrA) involved in the sulfur metabolic 
biological pathway. Therefore, we named this cluster sulfur metabolic 
cells and present the sulfur metabolic biological pathway in Fig. 4b. 
We further found that species composition varied greatly within the 
same cluster, reflecting the fact that different species may perform 
similar active functions. Meanwhile, cells from the same species were 

distributed in different functional clusters, suggesting that the cellu-
lar activity differed individually within species (Fig. 4a and Extended 
Data Fig. 4c). Our results suggest that the functional heterogeneity of 
microbial functional clusters stems from changes in gene expression 
and may be determined by differences in species composition as well 
as individual cell activities.

Based on the above finding, we further explored the functional het-
erogeneity of the same species. We extracted the cell clusters with more 
than 5,000 cells and more than 500 species (that is, integrase/amylase+ 
metabolic cells, HSP90+ HMACs, RPA+ lipid metabolic cells, formate/
nitrite transporter cells, GTPase+ proliferating cells and autosomal 
recessive ADP-ribosylglycohydrolase-positive (ARH+) cells; Extended 
Data Fig. 5a). Within these six cell clusters, we extracted 89 species that 
were distributed in more than three cell clusters with a minimum of 
ten cells per cluster. We used the functional gene proportion (FGP) in a 
single cell to determine the functional activity of each cell for a certain 
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pathway. We calculated the FGPs for each COG pathway and analysed 
the inter-cluster differences of the same species. As an example, we 
visualized the P values of eight species in a heatmap (Extended Data 
Fig. 5a; P values for all species are detailed in Supplementary Table 7) 
and found that the inter-cluster differences varied across species, sug-
gesting the presence of key species whose functional roles changed 
considerably in microbial ecosystems. We found that there were 17 COG 
pathways in Basfia succiniciproducens displaying significantly differ-
ent FGPs between clusters (P < 0.0001). As an example, we performed 
inter-cluster multiple comparisons of FGPs for three important meta-
bolic pathways in B. succiniciproducens (Extended Data Fig. 5b–d). The 
results suggest that cells of B. succiniciproducens in different functional 
clusters enact distinct roles. Next, we combined both cluster and spe-
cies information into certain units (named as ‘cluster—species’, such as 
HSP90+ HMACs—B. succiniciproducens) and performed cellular interac-
tion network analysis on them. Within all cells, we extracted 213 units 
that were distributed in more than three samples with a minimum of 
ten cells per sample. We found a total of 519 interactions among these 
units (Extended Data Fig. 6). Notably, interactions were found between 
HSP90+ HMACs—B. succiniciproducens and six other units, including 
units from the same or different clusters and species, suggesting broad 
ecological associations between clusters and between species. The 
deeper analyses of B. succiniciproducens are shown in Figs. 5 and 6.  
Overall, our results reveal differences in gene expression, function 
and species composition across clusters, as well as the interactions 
between clusters and between species, which are key to understanding 
the characterization of microbial functional clusters.

Single-cell metabolic insights of the rumen microbiome
After discovering the heterogeneity and interactions between different 
functional clusters, we further explored the heterogeneity between 
cells in the same functional cluster. Due to the importance of rumen 
microbial fermentation and the vital role of carbohydrate metabolism 
in this process, a large number (50,199) of HMACs were selected. HMACs 
showed higher overall metabolic FGPs (0.356 versus 0.048; P < 0.01) 
and carbohydrate metabolic FGPs (0.100 versus 0.033; P < 0.01) than 
the other cells (Fig. 5a). We used the gene expression matrix of the 
HMACs for re-clustering analysis after the more refined normalization 
and benchmarking processes. Based on the specifically expressed 
genes, ten sub-functional clusters were identified within the HMACs: 
helix-turn-helix-positive (HTH+) HMACs, peptide transporter HMACs, 
integrase+ HMACs, motility HMACs, membrane protein+ HMACs, lipid 
metabolism HMACs, secretion HMACs, TonB-linked protein+ HMACs, 
multi-signal HMACs and His kinase A+ HMACs (Fig. 5b,c and Supple-
mentary Table 5). To further explore the active roles of these HMACs 
in carbohydrate metabolism during rumen microbial fermentation, 
we refined the classic carbohydrate metabolic pathways36, from fibre 
substrate (pectin, cellulose, glucan, mannan and xylan) to volatile fatty 
acid production (acetate, propionate and butyrate), by connecting 
the key intermediate metabolite pyruvate as the core37 (Fig. 5d). We 
extracted accurately identified cells (cells with accurate species anno-
tation, totalling 5,636 cells; see Methods) from the ten sub-functional 
clusters for subsequent analysis (Supplementary Table 8). Among the 
ten sub-functional clusters, we observed distinct heterogeneity in 
the carbohydrate metabolic pathways (Extended Data Figs. 7 and 8). 
According to the average FGPs of the ten sub-functional clusters, the 
cluster His kinase A+ HMACs showed the highest metabolic activity and 
largest proportion of active cells in the following two processes: (1) from 
cellulose to glucose; and (2) from glucan to glucose. This was despite 
it consisting of a small number of cells (0.97%; 55/5,636 cells). The het-
erogeneity between sub-functional clusters reflects the re-divisibility 
of functional clusters, indicating that the resolution of cell types can 
be gradually improved by re-clustering analysis. From the analysis, we 
revealed that HMACs in the rumen (a certain sub-population of cells 
exerting patterns of high metabolism) play an important role in the 

classic carbohydrate metabolic pathways, from those involved with 
fibre content to those involved with volatile fatty acids, which renews 
our knowledge of rumen metabolic functions.

The production of propionate from pectin is an important pathway 
of fibre degradation in the rumen and was found to be the limiting path-
way in crop by-product utilization in our previous study38. We selected 
four clusters ((1) integrase+ HMACs; (2) HTH+ HMACs; (3) peptide trans-
porter HMACs; and (4) motility HMACs) with the highest numbers of 
cells (1,988, 1,462, 1,108 and 265 cells, respectively) and calculated their 
FGPs in four respective continuous steps: (1) pectin metabolized to 
produce pyruvate; (2) pyruvate metabolized to produce succinate; (3) 
succinate metabolized to produce propionyl coenzyme A; and (4) coen-
zyme A metabolized to produce propionate (Fig. 5e). Consistent with 
previous results, the change in pectin metabolic FGPs for these four 
cell clusters was distinctly heterogeneous (Fig. 5e). Because functional 
heterogeneity was detected between clusters of B. succiniciproducens 
in Extended Data Fig. 5, we further investigated whether the functions 
of B. succiniciproducens were consistent with the clusters to which it 
belonged. We found that the change in average FGPs of B. succinicipro-
ducens was similar to that of the integrase+ HMAC cluster, with a peak 
occurring during the conversion of pyruvate to succinate (Fig. 5e). The 
current research suggests that microbial functional group succession 
results from metabolically induced habitat changes, specifically in 
terms of the increased or decreased abundance of functional groups. 
The species varied consistently with functional clusters, which indi-
cates the potential transformation of B. succiniciproducens cells from 
one to another functional group, which is further explored in Fig. 6.

Cellular functional trajectories of B. succiniciproducens
B. succiniciproducens is a major producer of succinic acid using glucose 
as a substrate39. As a core member of the rumen microbiome40, B. suc-
ciniciproducens was detected in all of the samples of this study and 
found to interact with Prevotella species, which were considered to be 
keystone microbes exerting similar roles. Although the important func-
tions of B. succiniciproducens have been recognized, its metabolic pat-
terns in ruminal microbial communities are under-characterized. The 
high-quality genome of B. succiniciproducens (completeness = 100%; 
contamination = 0) in the BGMGM ensures the accurate use of MscT. 
Using MscT, 5,591 cells were accurately annotated as B. succiniciprodu-
cens. We extracted single-cell transcriptomics of these cells for cluster-
ing and identified eight functional clusters (Fig. 6a and Extended Data 
Fig. 9a,b), indicating that microbes at the species level can be further 
categorized into different types. Since microbial cells also have a con-
tinuous progression of biological processes based on gene expression, 
we performed pseudo-time analysis41,42 and found that the functional 
clusters were explicitly distributed on three different trajectories of 
B. succiniciproducens cells (Fig. 6b). We extracted the clusters with 
the highest number of cells on each trajectory for further analysis: 
transposase+ formate/nitrite transporter cells (trajectory1; 131 cells), 
integrase+ cells (trajectory 2; 206 cells) and multi-signal cells (primary 
trajectory; 1,316 cells). These three clusters were annotated by their 
specifically expressed genes, such as the transposase domain gene43, 
formate/nitrite transporter family gene44 and integrase domain gene45 
(details in Supplementary Table 5). Based on the biological processes 
of the rumen microbiome and the dynamics from substrates to end 
products, cell metabolic trajectories of B. succiniciproducens cells were 
predicted to move from the primary trajectory (multi-signal cells) to 
trajectory 1 (transposase+ formate/nitrite transporter cells) and trajec-
tory 2 (integrase+ cells). Further pseudo-time differential gene analysis 
confirmed this transformation (Fig. 6c and Extended Data Fig. 9c).

To explore which genes contribute to which cell state transi-
tions, we generated a pseudo-time heatmap for B. succiniciproducens 
cells and obtained 2,051 genes that co-varied across pseudo-time 
(Fig. 6c). Among these, 603 were enriched between the two trajectories  
and involved in 147 different pathways (Supplementary Table 9).  
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The biofilm formation pathway (ko02025) showed the highest enrich-
ment score (rich factor = 0.256; adjusted P < 0.001) owing to the sig-
nificant changes of 21 genes (Fig. 6d). Specifically, the integrase+ cells 
were significantly more active than the transposase+ formate/nitrite 
transporter cells in the biofilm formation pathway (P < 0.001). Genes 
are mainly enriched in the Gac/Rsm signalling process of this pathway 
(Extended Data Fig. 9d and Supplementary Table 10), which is related to 
cytotoxicity, motility and cellular response to the environment46. The 
results revealed that the Gac/Rsm signalling process plays an essential 
role in functional cluster transformation of B. succiniciproducens. 
Interestingly, the two transformed functional clusters have obvious 
heterogeneity in the phenotype of metabolic processes using pyruvate 
as a substrate: transposase+ formate/nitrite transporter cells are signifi-
cantly more active in the pyruvate to acetyl-CoA metabolic processes 
(P = 0.049), whereas integrase+ cells are significantly more active in 
the pyruvate to succinate metabolic processes (P = 0.017) (Fig. 6b,e 
and Supplementary Table 11). Pyruvate is a key intermediate in glucose 
metabolism, involved in the interconversion of sugars, fats and amino 
acids in the body37. Pyruvate metabolic processes are closely related 
to ruminal hydrogen metabolism, connecting the major nodes of the 
microbial fermentation process and influencing methanogenesis47. The 
metabolism of pyruvate to succinate reduces hydrogen production, 
which is of great value in rumen methane emission reduction studies. 
These results provide functional insights into the in situ microbial cell 
state transformation analysis of complex microbial ecosystems at the 
single-cell level. Under natural conditions, complex competition and 
environmental factors affect microbial cells, leading to changes in gene 
expression48,49. Therefore, cell state transformation based on the gene 
expression structure has great potential for regulating microbial cell 
metabolic phenotypes.

Discussion
In this study, we report on MscT technology, which enables high- 
throughput capture and annotation of microbial cells in complex com-
munities with numerous unknown and unculturable species. Using 
MscT, we constructed a single-cell atlas of the rumen microbiome, 
covering 174,531 high-quality single-cell transcriptomes from 2,534 
microbial species. Different microbial scRNA-seq approaches, such 
as PETRI-seq applied to Escherichia coli MG1655 cells14, microSPLiT 
applied to Bacillus subtilis PY79 cells15 and BacDrop applied to Klebsiella  
pneumoniae MGH66 cells16, have reported prokaryotic expression pro-
files. However, they have only been applied to fewer than five pre-known 
species in simple synthetic microbial communities and focused on 
localized biological processes rather than global ecosystems50. Our 
previous methods have been successfully applied in high-throughput 
microbial scRNA-seq17. The current version increases the efficiency for 
all species owing to updated random primers and its pre-indexes-based 
foundation. Microbial pangenome-based computational analysis is 
an effective solution for microbial transcriptomic annotation, and 
is theoretically well suited for any complex microbial environment. 
Integration of the above two important techniques in MscT shows 
great advantages and synergistic effects, enabling the detection and 
annotation of a larger number of expressed genes in each cell compared 
with other existing microbial scRNA-seq approaches.

Single-cell RNA-seq of the human gut microbiome is much easier 
because of well-established microbial reference genomes5,6,51. There 
is a severe lack of sufficiently sized genomic datasets in most other 
complex microbial environments, such as the guts of other animals, 
soil and oceans. Similarly, current studies on the rumen microbiome 
are limited by the lack of a comprehensive and high-quality collection 
of rumen microbial genomes, which serves as a prerequisite of this 
study. The BGMGM is a bovine gastrointestinal microbial genomic 
database with more than 47,000 genomes and 25 million genes. Nota-
bly, the number of de-replicated putative species-level genomes in 
BGMGM was remarkably close to the estimated number of microbial 

species in the rumen (13,572 versus 13,616)32. The larger number and 
higher quality of rumen microbial genomes20,32 enable a more accurate 
understanding of the structure and functionality of microbial genomes 
in the rumen. The construction of BGMGM will not only contribute to 
the development and use of MscT but also expand the systematic and 
holistic understanding of microbial environments.

As the rumen hosts many microbes with high species richness and 
active microbial fermentation18,52, the rumen microbiome serves as a 
good model for microbial ecosystem research. The first application 
of the landmark metagenomic binning technique was conducted on 
rumen microbes4 and has attracted increasing attention in rumen 
microbial biology. Using MscT, we have identified functional clus-
ters consisting of many different species of microbial cells, based on 
active gene expression structure and functional heterogeneity. The 
fingerprint produced by MscT records gene expression information 
for each cell, thus providing an approach to exploring functional het-
erogeneity in strains that are similar in evolutionary relationships. The 
single-cell transcriptomic landscape allowed us to accurately charac-
terize the core functional clusters and key dynamic metabolic features 
of microbes during pyruvate-centred carbohydrate metabolism. Our 
research renews our knowledge of classic carbohydrate metabolism 
in the rumen and will lead to the construction of dynamic cellular 
metabolic maps of microbial ecosystems, which is a milestone in the 
exploration of active microbial functional states at a higher resolution.

In summary, our MscT approach demonstrates significant 
advancements in resolution, quality and accuracy, making it the appro-
priate scRNA-seq method for studying complex microbial communi-
ties. The functional clusters identified through MscT have expanded 
our understanding of microbial functional heterogeneity and its bio-
logical basis with unprecedented details. Despite our in-depth stud-
ies, we are still limited by the boundaries of current technology. For 
example, only few (25) Archaea cells were captured due to the cell wall 
composition, leading to insufficient insights into rumen methane emis-
sions. Meanwhile, methods to separate functional clusters have not 
been developed, resulting in validation through synthetic communities 
still being a great challenge. Future studies should focus on promot-
ing the widespread availability of these approaches to microbiome 
research by standardizing existing techniques, improving cell capture 
capability and developing functional cluster isolation methods.

Methods
Animals and rumen sample collection
The experimental protocol (protocol number: 12410) was approved by 
the Animal Use and Care Committee of Zhejiang University (Hangzhou, 
China) and the procedures were conducted based on the university’s 
guidelines for animal research.

A total of 30 Holstein dairy cows with similar body weight and 
days in milk and under the same diet were selected from commercial 
dairy farms in the same area in Hangzhou (see Source Data Fig. 1 for the 
ingredients and nutrient composition of the total mixed ration fed to 
the cows). The rumen fluid of each cow was collected using oral stom-
ach tubes, followed by centrifugation at 3,000g for 2 min at 4 °C. The 
supernatant was removed and the remaining biomass was collected. 
Then, the tubes were deposited in a liquid nitrogen tank, which was 
transported back to the laboratory and stored at −80 °C.

No statistical methods were used to pre-determine sample sizes, 
but we collected 174,531 high-quality cells in the rumen fluid, equat-
ing to a large sample size and cell number for microbial scRNA-seq. 
This sample size is considered sufficiently representative in rumen 
microbial ecosystem studies. Data collection and analysis were not 
performed blind to the conditions of the experiments.

Metagenomic sequencing and binning
DNA extraction, library construction and sequencing. The total DNA 
extraction of 30 rumen fluid samples was carried out using the E.Z.N.A. 
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Stool DNA Kit (Omega Bio-tek) following the protocol described by Yu 
and Morrison53. After completing genomic DNA extraction, 1% aga-
rose gel electrophoresis was used for detection. For each sample, 1 μg 
genomic DNA was taken as the procedure template and sheared using 
a Covaris S220 Focused-ultrasonicator. The DNA was then fragmented 
into approximately 450 base pairs (bp) for library preparation. All of 
the samples were sequenced in an Illumina HiSeq X instrument with 
the 150-bp pair-end mode.

Pre-processing of raw sequencing data. To improve the quality, the 
raw data were trimmed using Trimmomatic version 0.36 (ref. 54) to 
remove adaptors and bases containing non-A, -G, -C and -T at the 5′ end, 
as well as any reads with a sequencing quality value of <20 or containing 
up to 10% N. After removing the adaptors and trimming, reads <75 bp in 
length were discarded. To further decrease the potential contamination 
from the host, the retained reads were mapped to the bovine genome 
from RefSeq (NCBI RefSeq assembly GCF_002263795.2) using the BWA 
mem algorithm (parameters: -M -k 32 -t 16; http://bio-bwa.sourceforge.
net/bwa.shtml) and any aligned reads were removed. The remaining 
high-quality reads without host genome contamination were consid-
ered to be clean reads and were used for the further analysis.

Metagenomic binning. A set of contigs for each sample was  
generated using MegaHit version 1.1.1-2-g02102e1 with the parameters 
--min-contig-len 500 (ref. 55). MetaBAT2 version 2.11.1 (ref. 56) was used to 
perform binning on individual sample assemblies, and the completeness 
and contamination of all bins were obtained using CheckM version 1.1.3 
(ref. 57). Bins with a completeness of ≥50% and a contamination of <10% 
were marked as filtered bins. Then, the bin abundance in each sample was 
quantified using the quant_bins module of metaWRAP version 1.3 (ref. 58).

The BGMGM
Microbial genomic datasets from public resources. We collected 
54,403 bovine gastrointestinal microbial genomes (Supplementary 
Table 1) from 2,311 samples from ten different studies8,19–27. Overall, the 
samples covered 11 regions: China (Anhui, Hainan, Hangzhou, Henan, 
Hubei, Guangxi, Nanjing, Tibet and Yunnan), Scotland and Kenya. 
The metagenomes were sampled from ten gastrointestinal sites: the 
rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, 
colon, caecum and rectum. The genomes from the rumen were the most 
dominant (over 29,255). All of the genomic data are available in public 
databases (PRJNA656389, PRJEB21624, PRJEB39057, PRJNA526070, 
PRJNA597489, PRJNA657455, PRJNA657473, PRJEB31266, PRJEB21624 
and https://db.cngb.org/qtp).

De-redundancy and taxonomic analysis. In total, we collected 1,312 
genomes generated from the present study and 54,403 genomes from 
public studies. These 55,715 bovine gastrointestinal microbial genomes 
were organized to construct the BGMGM. Considering the various 
genome filter criteria from different studies, genome completeness and 
contamination were re-estimated using CheckM version 1.1.3 (ref. 57).  
The quality of genomes was determined based on the MIMAG stand-
ard59 and only those of high or medium quality were kept (for high qual-
ity, completeness > 90% and contamination < 5%; for medium quality, 
completeness ≥ 50% and contamination < 10%; Genomes from public 
studies were kept only if they meet the 'completeness − 5 × contamina-
tion ≥ 50' condition to ensure high data quality). The medium-quality 
genomes were separated into two groups based on their quality score 
(for relative-high quality parts, QS ≥ 75; for relative-low quality parts, 
QS < 75; QS = completeness − 5 × contamination + ln[N50 − contigs]) 
to obtain more detailed results when comparing with high-quality 
genomes60,61. The near-complete genomes were distinguished by a qual-
ity score > 100 from the high-quality group to select a highest-quality 
portion for visualization. Then, species-level clustering was performed 
using dRep version 3.2.0 (ref. 62) with the option -pa 0.95, which sets the 

average nucleotide identity to 95%. Subsequently, 13,572 species-level 
genome operational taxonomic units (gOTUs) were generated for 
downstream analysis. The taxonomy of genomes was classified using 
GTDB-Tk63 with the database version R214 and the toolkit version 
2.3.2. To infer the phylogenetic position of studied genomes, phylog-
enomic trees of near-complete genomes were reconstructed using 
PhyloPhlAn 3.0 (ref. 64). The phylogenomic tree was generated based 
on the marker genes in the PhyloPhlAn database (http://cmprod1.cibio.
unitn.it/databases/PhyloPhlAn)28 and visualized using iTOL65. All of the 
filtered genomes were visualized with genome size, completeness, 
contaminations, N50 contigs and scaffolds in a matrix and the 13,572 
non-redundant genomes were uniformly named CowSGB-X.

Gene and functional annotation. Protein-coding genes were 
predicted using Prodigal version 2.6.3 (ref. 66) with the option -p 
meta. Non-redundant microbial gene catalogues were clustered  
using CD-HIT-EST (setting: -c 0.95 -G 0 -T 140 -n 5 -aS 0.9 -M 0) to elim-
inate redundant sequences. Protein sequences of non-redundant 
microbial gene catalogues were annotated using diamond version 2.0.4 
(ref. 67) against the COG68 database and HMMER version 3.3 (https://
hmmer.org/) against the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)69 and CAZy70 databases. The results of annotations in different 
databases were integrated. Genes identified in at least two databases 
were considered together to determine their functions.

Single-cell RNA-seq of the rumen microbiome
Cell suspension preparation. The thawed rumen fluid samples were 
resuspended in 15 ml 4% paraformaldehyde (PFA) and then dispersed 
through gentle vortexing. The dispersed solutions were filtered 
through a cascade of cell strainers with assorted pore sizes from 70 µm 
(43-10070-40; pluriSelect) to 10 µm (43-10010-40; pluriSelect) to 
remove impurities and acquire optimal single-cell suspension. The 
filtered solutions were centrifuged at 4,000g for 10 min at 4 °C. The 
supernatants were aspirated and microbial pellets were resuspended 
in 10 ml 4% PFA and then incubated overnight at 4 °C with 10 rpm rota-
tional shaking.

Cell permeabilization. Following overnight fixation, PFA was discarded 
by centrifuging the cells at 4,000g for 10 min at 4 °C and the pellets 
were resuspended in 5 ml cold PBS-RI (that is, 1× phosphate-buffered 
saline (PBS) with 1 U µl−1 RNase inhibitor (N8080119; Invitrogen)). Cells 
were centrifuged again and resuspended in 1 ml pre-chilled 100 mM 
Tris-HCL-RI (pH 7) (that is, 100 mM Tris-HCL (pH 7) with 1 U µl−1 RNase 
inhibitor), followed by centrifugation at 4,000g for 5 min at 4 °C. Pellets 
were resuspended in 250 µl pre-chilled 0.04% Tween-20 (A600560; 
Sangon Biotech) in PBS and permeabilized on ice for 3 min. Centrifu-
gation was then performed twice at 4,000g for 5 min at 4 °C and then 
the cells were counted. Approximately 50 million cells were obtained, 
resuspended in 200 µl lysozyme and then mixed on ice.

Cell wall digestion was set up with the reaction system consist-
ing of 147.5 µl cells in nuclease-free water, 40 µl Lyso-Buffer, 2.5 µl 
RNase inhibitor and 10 µl lysozyme. The reagents were included in 
the VITApilote-PFT1200 kit (R20115124; M20 Genomics). Cells were 
incubated at 37 °C in a thermocycler for 15 min, then 1 ml pre-chilled 
PBS-RI was added to stop the incubation. Centrifugation was then 
performed twice at 4,000g for 5 min at 4 °C and the cells and pellets 
were resuspended in 1 ml pre-chilled PBS-RI. Cells were counted and a 
total of 5 million were prepared for ongoing processing.

In situ pre-barcoding reverse transcription. For the reverse tran-
scription reaction, cells were evenly distributed into 14 PCR tubes 
and a pre-barcoded random primer was added to each. Each PCR tube 
was set up as follows: 2.25 µl cells in PBS, 0.25 µl 100 mM dNTPs, 1 µl  
5× reverse transcription buffer, 0.25 µl RNase inhibitor, 0.25 µl 
reverse transcriptase and 1 µl 10 µM pre-barcoded random primer. 
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The reagents and primers were included in the VITApilote-PFT1200 
kit. The PCR tubes were incubated with 12 cycles of multiple annealing 
ramping from 8–42 °C and then 42 °C for 30 min.

dA tailing. Following reverse transcription, 1 µl 50 mM EDTA was added 
to each PCR tube to terminate the incubation. Cells were transferred to 
one PCR tube and washed three times to deplete the residual reagent 
and random primers. The dA tailing reaction system was set up as fol-
lows: 39 µl cells in PBS, 5 µl buffer T2, 5 µl buffer T1, 0.5 µl TT enzyme 
and 0.5 µl 100 mM dATP. The reaction mix was incubated at 37 °C for 
30 min. The reagents were included in the VITApilote-PFT1200 kit.

Single-cell droplet generation. Cells were counted and diluted with 
density gradient solution. Cells, 2× DNA extension reaction mix and 
ready-to-use hydrogel barcoded beads were encapsulated into drop-
lets using the microfluidic platform VITAcruizer DP400 (E20000131; 
M20 Genomics) and chip (E20000131; M20 Genomics). All reagents 
for droplet generation were included in the VITApilote-PFT1200 kit. 
Droplets were then incubated at 37 °C for 1 h, 50 °C for 30 min, 60 °C 
for 30 min and 75 °C for 20 min.

Complementary DNA purification and amplification. Droplets were 
broken with perfluorooctane after the extension reaction. The aqueous 
phase was purified using AMPure XP beads (A63881; Beckman Coulter) 
and the purified complementary DNA (cDNA) was amplified by PCR 
reaction, followed by purification with AMPure XP beads and elution 
with nuclease-free water. The reagents and primers were included in 
the VITApilote-PFT1200 kit. The eluted cDNA was quantified by Qubit 
4.0 fluorometer (Q33238; Invitrogen) and measured by 4200 TapeSta-
tion (G2991BA; Agilent).

Library preparation and sequencing. The VAHTS Universal DNA 
Library Prep Kit for Illumina V3 (ND607-03/04; Vazyme) was used for 
library construction. The cDNA was qualified by end-repair and adenyla-
tion reaction. The reaction mix containing 50 ng fragmented cDNA, 
end-repair buffer end-repair enzymes and nuclease-free water was 
incubated at 30 °C for 30 min and inactivated at 65 °C for 30 min. It was 
was then combined with ligation enzymes and a working adaptor and 
incubated at 20 °C for 15 min. The ligated DNA was purified with AMPure 
XP beads. Library amplification was performed, followed by purifica-
tion. The final cDNA library was quantified by Qubit 4.0 and measured 
by 4200 TapeStation. Library sequencing was performed using the 
NovaSeq 6000 and S4 Reagent Kit with paired-end reads of 150 bp. 
The sequencing generated a total of ~3.8 Tb data from the 14 samples.

MscT analysis
Data quality control and filtering. Within the paired-end reads, for-
ward reads (28 bp in total) containing the barcodes (20 bp) and unique 
molecular identifiers (8 bp) for distinguishing the single cells and genes 
were not trimmed, whereas the raw reverse reads were trimmed with 
Trimmomatic version 0.36 (ref. 54) with the options SLIDINGWIN-
DOW:4:15 MINLEN:50. Clean reads shorter than 50 bp were discarded 
in further analyses. Each clean read was identified as belonging to a 
particular cell based on the barcodes. The number of valid cells in each 
sample was determined from the number of cellular reads. The thresh-
olds (2,000, 2,500, 5,000 and 6,000) of cell reads were set depending 
on the quality, sequencing depth and number of cells required to 
extract valid cells (see the 10x standard; Supplementary Table 12).

Gene abundance calculation and high-quality single-cell  
screening. The clean reads from cells with taxonomic information 
were mapped to the non-redundant microbial gene catalogues from 
the BGMGM by BWA version 0.7.17-r1188 (ref. 71). The number of reads 
successfully matched was extracted from the alignment results using 
bedtools version 2.28.0. For each sample, the genes that covered fewer 

than three cells were ignored in further analysis. Then, all sample cells 
were integrated together. The cells with both nCount and nFeature values 
between three times the median absolute deviation were defined 
as high-quality cells and the remainder were removed. The selected 
high-quality cells with mapping results were combined and exported 
as the single-cell gene expression matrix.

Preparation of the Kraken2-based gOTUs database. For the taxo-
nomic identification of each single cell, customized Kraken2-based 
gOTUs databases were constructed using Kraken2 (ref. 72). Riboso-
mal RNA genes were predicted using barrnap (https://github.com/
tseemann/barrnap) and masked in gOTU genomes using bedtools 
(https://bedtools.readthedocs.io/). The kraken2-build module 
in the Kraken2 software package was used (settings: --no-masking 
--add-to-library) to create a classification database based on the masked 
gOTU genomes and corresponding taxonomic information. Then, the 
generated sequences were classified and constructed in the Kraken2 
database. Furthermore, the count-kmer-abundances.pl script (setting: 
--read-length 100) was used to compute the K-mer pattern count of the 
database and store it as a db.kraken2.100mers.cnts file. Finally, the 
generate_kmer_distribution.py script (settings: -i db.kraken2.100mers.
cnts -o KMER_DISTR.TXT) was used to generate a distribution file of 
the K-mer patterns.

Taxonomy determination. Clean reads for each single cell were clas-
sified by Kraken2 against the customized gOTUs databases. Cells were 
classified into seven phylogenetic levels (domain, phylum, class, order, 
family, genus and species) or unclassified. The normalized read num-
ber of taxonomies was calculated using Bracken (https://ccb.jhu.edu/
software/bracken/), which used a Bayesian model to estimate normal-
ized abundance. To obtain accurate taxonomic information for each 
cell, cells with more than 50% informative reads hitting the uppermost 
taxonomic level were considered to have a positive result (recognized 
as accurate annotated cells); otherwise, they were considered as the 
related taxonomic and were marked with the '__like' flag after the spe-
cies name (Extended Data Fig. 3a). In this step, the unclassified reads 
were not calculated.

Filtering and benchmarking before clustering analysis. The 
single-cell gene expression matrix was imported into Seurat73  
(version 4.3.0) for subsequent analysis. Overall, cells with both nCount_RNA  
and nFeature_RNA values within threefold median absolute deviation  
were retained to be high quality and all others were removed. The 
DoubletFinder74 package (version 2.0.3) was used to remove doublets. 
Then, the genes that covered fewer than three cells were removed. A 
series of benchmarks were used to determine the optimal parameters 
for dimension value and resolution value in the clustering analysis. The 
dimension value was determined by ElbowPlot, which shows the stand-
ard deviations of different principal components. When the points fall 
on a plateau (where the standard deviation does not change much) 
after an inflection point, the corresponding principal component is 
selected as the best possible dimension value. The resolution value 
was determined using the clustree75 package (version 0.5.1), which 
generates clustering trees to interrogate clusters along with resolution 
increases. When cell clusters start to mix after a certain resolution, that 
resolution is selected as the best possible resolution value.

Cell clustering and functional cluster identification. After filtering 
and benchmarking, the dimensionality of all high-quality cells was 
reduced by uniform manifold approximation and projection. Batch 
effects between samples were removed using Harmony76 (version 
0.1.0). The clusters were identified using the FindClusters function 
(resolution = 0.3) of Seurat. Differentially expressed genes (DEGs) 
were determined using the FindAllMarkers function (average log (fold 
change) > 0.25, adjusted P value < 0.05 and per cent > 0.1) of Seurat. 
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Among the DEGs, those with annotated information and well-defined 
functional characteristics were identified as marker genes for each cell 
cluster. When there were multiple genes pointing to a certain function 
in a cell cluster (if present), the cluster was named after that function.

Interaction analysis. The cell units were categorized by the cell infor-
mation of the functional cluster and species (named as cluster—spe-
cies; for example, HSP90+ HMACs—B. succiniciproducens). The cell 
units found in more than three samples with a minimum of ten cells 
for each sample were extracted for interaction analysis. A total of 213 
cell units were included in the sparse inverse covariance estimation for 
ecological association inference (SPIEC-EASI) analysis77. The SPIEC-EASI 
analysis was performed using the R package SpiecEasi version 1.0.7 with 
Meinshausen–Buhlmann’s neighbourhood selection method. A total 
of 519 interactions were identified and visualized using Gephi version 
0.10 with the Fruchterman Reingold layout.

Re-clustering and pathway functional activity analysis. The cells 
of the functional cluster HMACs and the species B. succiniciproducens 
were extracted for re-clustering analysis and the genes that covered 
fewer than three cells of these two groups were removed. The rest of 
the clustering and functional cluster identification analyses were the 
same as described previously. The functional activity of each cell for a 
certain pathway was calculated using the functional gene proportion 
(FGP, the number of functional genes in a certain pathway divided by 
the number of all annotated genes in a single cell). The genes used in the 
classic carbohydrate pathway were identified by the annotation results 
of the databases COG 2022-03, KEGG R107, Gene Ontology 2023-01-01 
and CAZy 2022 (Supplementary Table 13).

Pseudo-time analysis. After re-clustering analysis, the cells of spe-
cies B. succiniciproducens were extracted for pseudo-time analysis 
(Supplementary Table 14). The Monocle 2 (ref. 41) package (version 
2.28.0) was used to discover cell functional state transformations. 
CellDataSet data were constructed from Seurat data using the function 
newCellDataSet. DEGs were calculated using the function differential-
GeneTest. Genes with a q value of <0.01 were regarded as DEGs. The 
DEGs were sorted and imported into CellDataSet data using the func-
tion SetOrderingFilter. The pseudo-time trajectory was constructed 
using the DDRTree algorithm with default parameters. The dynamic 
expression changes of the determined DEGs were visualized using the 
plot_pseudotime_heatmap function.

Enrichment analysis. For functional enrichment, a two-tailed Fisher’s 
exact test (see Source Data Fig. 6) was used to evaluate the enrich-
ment of the DEGs against the non-redundant genes of the ruminant 
gastrointestinal microbiome. A corrected P value of <0.05 indicated 
significance (see the formula below)78,79.

The false discovery rate (FDR) was calculated based on the nomi-
nal P value from the hypergeometric test and the following formula  
(P the PpathwayA, value of KEGG pathway A; a, the number of DEGs in 
KEGG pathway A; b, the number of non-DEGs in KEGG pathway A; c, the 
number of DEGs in other KEGG pathways; d, the number of non-DEGs 
in other KEGG pathways; n = a + b + c + d; PFDR, the false discovery rate 
of PpathwayA; Plength, the total number of P values; Prank, the rank number 
of PpathwayA):

PpathwayA =
(
a + b

a
) (

c + d

c
)

(
n

a + c
)

=
(a + b)!(c + d)!(a + c)!(b + d)!

a!b!c!d!n!

PFDR = PpathwayA × Plength/Prank

Statistical analysis. The statistical significance of the differences 
in quality between high and medium quality and the differences in 
FGPs between cell clusters was analysed by Wilcoxon rank-sum test. 
The statistical significance of the inter-cluster differences in FGPs for 
COG pathways in the same species was analysed using the Kruskal–
Wallis test. A P value of <0.05 was considered statistically significant. 
The inter-cluster multiple comparisons of FGPs for COG pathways in  
B. succiniciproducens were performed using Dunn post-hoc tests (for 
continuous variables, the R package FSA was used). The normality and 
equal variances were formally tested. The P values of the inter-cluster 
multiple comparisons and enrichment analysis were adjusted by the 
FDR (using the Benjamini–Hochberg method). An adjusted P value of 
<0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All of the raw sequencing data of the MscT have been deposited to 
the Genome Sequence Archive database with the accession number 
CRA012211. The genome files of MAGs in the BGMGM, gene annotation 
files and intermediate files resulting from quality control, benchmark-
ing and other processes have been submitted to the Figshare database 
at https://figshare.com/articles/dataset/Microbiome_single-cell_tran-
scriptomics_reveal_functional_heterogeneity_of_metabolic_niches_
covering_more_than_2_500_species_in_the_rumen/24844344 (ref. 80). 
Source data are provided with this paper.

Code availability
The main codes and scripts from this study were uploaded to GitHub 
(https://github.com/J-MimgHui/MscT_codes).
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Extended Data Fig. 1 | Overall workflow of BGMGM construction. Workflow for the construction of the Bovine Gastro Microbial Genome Map (BGMGM).
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Extended Data Fig. 2 | The venn plot of annotated genes and the phylogenic tree of 47 Archaea MAGs. (A) The Venn plot of BGMGM genes annotated by KEGG 
database, GO database, CAZy database, and COG database. (B) The phylogenic tree of 47 Archaea MAGs. MAGs: metagenome assembled genomes. BGMGM, bovine 
gastro microbial genome map.
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Extended Data Fig. 3 | Microbiome single-cell transcriptomics 
computational analysis pipeline and performance. (A) Computational 
analysis pipeline including microbial pan-genome mapping, taxonomic level-
by-level annotation, and functional cluster-based atlas construction. (B) The 

UMI numbers and unique gene numbers in each sample. UMI, unique molecular 
identifiers. Each box represents the interquartile range (IQR), in which the middle 
line represents the median. The whiskers extend to 1.5 × IQR.
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Extended Data Fig. 4 | Heterogeneity among different functional clusters and species. (A) The cell and gene filtering steps as well as the benchmarking processes 
to determine the dimension and resolution values. (B) The UMAP plots for cells of different samples. (C) The UMAP plots for cells of different genera. UMAP, Uniform 
Manifold Approximation and Projection.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Differences between six functional clusters in the same 
species analyzed by the Kruskal–Wallis test with Dunn post hoc tests. (A) The 
P values of inter-cluster comparison for FGPs in eight species. The UMAP plot 
presented the functional clusters involved in the analysis. The heat map showed 
the P values. (B) Dunn post hoc test performed on the FGPs of carbohydrate 

transport and metabolism. (C) Dunn post hoc test performed on the FGPs of 
lipid transport and metabolism. (D) Dunn post hoc test performed on the FGPs 
of amino acid transport and metabolism. FGP: functional gene proportion (the 
number of functional genes in a certain pathway/the number of all annotated 
genes in single cell); UMAP, Uniform Manifold Approximation and Projection.
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Extended Data Fig. 6 | SPIEC-EASI analysis. The interaction networks of 213 cell units and the interactions between the HSP90+ HMACs—Basfia_succiniciproducens 
and other associated cell units. SPIEC-EASI, Sparse Inverse Covariance Estimation for Ecological Association Inference.
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Extended Data Fig. 7 | Carbohydrate metabolic activity analysis. Average classic carbohydrate metabolic FGPs of 10 sub-functional clusters generated from HMACs. 
FGPs, functional gene proportions, the number of functional genes in a certain pathway/the number of all annotated genes; HMACs, high metabolic activity cells.
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Extended Data Fig. 8 | Active cell proportion analysis. Active cell proportion of 10 sub-functional clusters generated from HMACs in each classic carbohydrate 
metabolic pathway. HMACs, high metabolic activity cells.
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Extended Data Fig. 9 | Marker genes and biofilm formation pathway activity 
analysis of 8 sub-population functional clusters form B. succiniciproducen 
cells. (A) The UMAP plot of eiight sub-population functional clusters form  
B. succiniciproducen cells. (B) Marker genes of eight sub-population functional 
clusters form B. succiniciproducen cells. (C) Transformational relationships 

between clusters “Multi signal cells”, “Integrase+ cells”, and “Transposase+ 
formate/nitrite TCs”. (D) “Biofilm.formation_P” pathway activity and two key 
gene proportion, n = 200 and 121 biologically independent cells. Data are 
presented as mean values +/- SEM. Two-side Wilcoxon rank sum test was used for 
data analysis. UMAP, Uniform Manifold Approximation and Projection.
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