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Primary breast cancer (BC) and metastatic tumors exhibit distinct tumor microenvironment (TME) ecosystems, and the heterogeneity
of the TME of BC poses challenges to effective therapies. Evaluating the TME at the single-cell and spatial profiles offers potential for
more precise treatments. However, due to the challenge of obtaining surgical specimens of both primary BC and oligo-recurrent lung
metastasis simultaneously for high-resolution spatial analysis, the TME of lung-specific metastases using paired samples remains
largely unexplored. In this study, we developed a comprehensive strategy using imaging mass cytometry (IMC), spatial proteomics,
single-nucleus RNA-seq (snRNA-seq) and multiplex immunofluorescence to explore the spatial topology of lung-specific metastasis
and the underlying biological mechanisms based on formalin-fixed paraffin-embedded (FFPE) samples from BC and paired lung
metastasis. A total of 250,600 high-quality cells with spatial information revealed by IMC depicted the spatial differences in the TME
between BC and lung metastasis. A significant increase in HLA-DR+ epithelial cells, endothelial cells and exhausted T cells was
detected in lung metastases compared to primary sites, with this difference accentuated in the triple-negative subtype. Moreover, a
distinct cellular hub comprising endothelial cells and HLA-DR+ epithelial cells implies the potential promising effect of anti-
angiogenic therapy and immunotherapy in BC with lung metastasis, which was further validated by multiplex immunofluorescence
analysis. Spatial proteomics further explored the underlying mechanism of TME components identified by IMC analysis. snRNA-seq
validated the enrichment of endothelial cells in lung metastasis than that in BC at a whole FFPE slide level. In conclusion, this study
determines the spatial multi-omics profiling of TME components at a single-cell resolution using paired samples of primary BC and
lung oligo-metastasis. The comprehensive analysis may contribute to the development of therapeutic options.
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INTRODUCTION
Breast cancer (BC) stands as one of the most prevalent
malignancies globally, ranking second in incidence and fourth in
cancer-related mortality [1]. Notably, 20–30% of metastatic breast
cancer (mBC) cases are diagnosed with metastasis at their initial
presentation, with over 90% of BC-related deaths attributed to
complications from metastasis [2, 3]. mBC presents as a
heterogeneous disease with varied prognoses, influenced by
diverse clinicopathological characteristics, including pathological
subtypes [4]. Clinically, BC is stratified into three subtypes: luminal
(ER+ , PR+ /−), HER2 overexpression (HER2+ , ER+ /−, PR+ /−),
and triple-negative breast cancer (TNBC; ER-, PR-, HER2-), each
exhibiting distinct relapse times and organ tropisms post-
diagnosis [2]. Treatment strategies for mBC share commonalities
yet diverge based on subtype and metastatic site. Recent
advancements in understanding BC’s molecular, genetic, and
immune landscapes have led to more targeted and promising
immunotherapies and targeted therapies [5]. However, the
heterogeneity of the tumor microenvironment (TME) poses
challenges to effective BC treatment. Interactions between tumor
cells and the other cellular components within the TME
significantly influence cancer therapeutic responses [6–9]. Precise
techniques have significantly enhanced our understanding of
TME, offering great potential for more effective treatments for
metastatic BC. Nowadays, single-cell RNA sequencing (scRNA-seq)
has been utilized to explore the heterogeneity of cellular
composition and molecular characteristics in primary BC and
partial metastatic lesions [10–14]. Spatially-resolved technologies
have further provided high-precision mapping, enabling detailed
assessments of tumor cell localization, immune cell infiltration,
and stromal interactions within the TME [10, 12–17]. For instance,
novel phenotypes of cancer-associated fibroblasts (CAFs) and
myeloid cells have been explored as predominant immune
modulators in antitumor immunity [14, 17]. Integrated cellular
models for BC subgroup classification, as well as therapy-related
prediction models, were also developed using these high-
throughput techniques [10, 16]. Despite the lungs being a
common BC metastatic site, solitary lung metastasis is rare
[3, 4, 18]. Surgical treatment of primary BC and paired lung
metastases is infrequent, hindering the acquisition of matched
samples for molecular characterization. Moreover, most techni-
ques require fresh tissue samples, while surgical specimens are
typically formalin-fixed paraffin-embedded (FFPE), further compli-
cating analysis. Recent advancements have enabled the applica-
tion of precise techniques to analyze the complexity of the TME
based on FFPE samples. For example, Patho-DBiT technology has
substantially improved RNA abundance detection in FFPE
samples, enabling high-yield, spatially genome-wide profiling of
various RNA species [19]. This advancement enables more detailed
analyses of RNA processing, microRNA-mRNA regulation, and
splicing events. Additionally, the PLATO platform integrating
microfluidics and transfer learning technologies, which achieved
high-resolution mapping of thousands of proteins across entire
tissue sections using FFPE tissue [20]. These emerging technolo-
gies will provide invaluable insights into the complex functional
features of the TME in BC lung metastasis, as well as the cellular
interactions within this environment. Considering the enriched
immune cell populations in BC lung metastasis, the application of
these spatial techniques—either through comprehensive RNA
profiling enabled by Patho-DBiT or high-resolution protein
mapping via PLATO—could significantly enhance our under-
standing of cellular interactions and spatial topology within the
metastatic TME. Nevertheless, there are limited studies on single-
cell and spatially resolved profiling of BC and paired lung
metastases till now.
Here, we evaluate the spatial topology of TME in BC and paired

lung metastases at a single-cell resolution. We employed FFPE
samples for imaging mass cytometry (IMC), spatial proteomics,

single-nucleus RNA-seq (snRNA-seq) and multiplex immunofluor-
escence (mIF) to elucidate BC and paired oligo-recurrent lung
metastasis characteristics. A lung-specific endothelial cell and HLA-
DR+ epithelial cell hub was identified, offering potential targets for
anti-angiogenic combined immunotherapy, thus presenting a
novel therapeutic avenue for BC patients with lung metastasis.

RESULTS
Single-cell spatial analysis of paired BC lung metastasis
To unravel the spatial topology of BC lung metastasis, we
conducted a comprehensive analysis strategy by integrating
IMC, mIF, and spatial proteomics on paired BC and lung metastasis
FFPE tissues (Fig. 1A). Initially, we employed a 40-marker panel of
IMC to elucidate the spatial differences in the TME between BC
and paired lung metastasis. The specimens were stained with the
40-plex antibody panel, targeting various cell types and immune
checkpoints. Subsequently, we obtained high-dimensional histo-
pathological images for each specimen, highlighting structural
markers such as pan-cytokeratin (Pan-CK) for epithelial cells,
collagen I for stromal cells, and immune cell markers including
CD20 and CD3 for B cells and T cells, respectively (Fig. 1B, C).
During the laser ablation process, we recorded the expression
levels of markers and the relative spatial locations of cells. Using
the IMC analysis pipeline, we generated cell masks for each cell,
enabling us to calculate the spatial distribution of cells within the
TME (Fig. S1), as well as the expression matrix of markers. The
correlation heatmap of the staining markers revealed strong
correlations between CD20 and CD45 or CD45RO (Fig. 1D),
consistent with previous studies [21, 22]. The IMC images were
segmented into 269,772 high-quality cells with spatial informa-
tion, which were clustered into 29 distinct immune cell clusters,
along with endothelial cells, epithelial cells, smooth muscle cells,
lineage negative cells and collagen I (Fig. 1E). These cell clusters
were subsequently clustered and annotated based on the
expression of canonical markers (Fig. 1E, F), and the average
expression of lineage markers for each cluster is illustrated in
Fig. 1G. The lineage negative cluster contained the cells which
could not be defined as any cell type. The distribution of cells from
different subtypes (HER2 overexpression, luminal, triple negative)
or originating from different sites (breast and lung metastasis) was
depicted by UMAP in Fig. S2A and Fig. S2B. The proportions of
each cluster relative to the total cells were also calculated and
illustrated (Fig. S2C), demonstrating the distribution of TME cell
abundance in each patient. CD57, typically found on active
immune cells, was observed to be expressed in a cluster of
epithelial cells (referred to as CD57+ epithelial cell). A previous
study also identified CD57 expression on epithelial cells in
prostate cancer [23]. To confirm the expression of CD57 on
epithelial cells, we conducted IHC staining. Our findings revealed a
proportion of epithelial cells expressing CD57, particularly on
ductal cells, consistent with the IMC analysis. Therefore, we
confirmed the accuracy of IMC analysis in our results. Taken
together, we applied IMC to depict the cell types in TME from BC
and lung metastasis.
Using IMC data, we identified the epithelial, immune, and

stromal areas of the TME, which were then merged to create a
spatial cell map in BC lung metastasis (Fig. 2A, Figs. S3 and 4).
Staining for HLA-DR, CD31, Pan-CK, and DNA revealed the
immune, endothelial, and epithelial areas, as well as cell nuclei
within the TME (Fig. 2B). The percentage of each cell type was
visualized using boxplots, showing CD15- epithelial cells, stromal
cells, and endothelial cells as the most abundant in the overall
spatial cell atlas (Fig. 2C). We then conducted paired analysis to
quantify cell type abundance in BC and lung metastasis (Fig. 2D
and Fig. S5A). Endothelial cells, HLA-DR+ epithelial cells, and
proliferative CD8+ T cells exhibited an increased tendency in lung
metastasis compared to BC. Conversely, CD57+ CD4+ T cells and
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Fig. 1 Imaging mass cytometry (IMC) revealing the spatial ecosystem of breast cancer lung metastasis at a single-cell protein level.
A Overview of the study design and workflow. Formalin-fixed paraffin-embedded samples from paired primary sites and lung metastases
were collected for IMC, multiplex immunofluorescence (mIF), spatial proteomics, single-nucleus RNA-sequencing. B Panel of all the markers
used in IMC. C Schematic illustration of region of interest (ROI) selection for targeted multiplexed imaging by IMC. Pan-CK was labeled with
green, DNA was labeled with blue and target marker was labeled with red. D The correlation heatmap of the staining markers. E Uniform
Manifold Approximation and Projection (UMAP) showing the identified 29 distinct immune cell clusters. F Major clusters annotated with
canonical markers. G Average expression of markers for each cluster.
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Fig. 2 IMC unraveling the cell component frequency differences in TME between breast cancer and paired lung metastasis. A Spatial cell
map in breast cancer lung metastasis merged based on IMC data, including epithelial, immune, and stromal areas. B Representative IMC
images of breast and lung metastasis with HLA-DR, CD31, Pan-CK, and DNA staining. Scale bar = 200 μm. C The percentage of each cell type
visualized using boxplots. D The abundance of different cell types between breast cancer and paired lung metastases quantified by paired
analysis. *P < 0.05, **P < 0.01.
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CD57+ CD8+ T cells showed a decreased tendency. Also, we
examined the subtype-specific cell proportion in both BC and lung
metastasis. The cell proportion in each subtype showed a similar
tendency in both BC and lung metastasis. For instance, CD15-

epithelial cells were enriched in HER2 overexpression subtype in
both breast and lung site. Conversely, CD57+ epithelial cells
showed increased proportion in triple negative subtype in both
breast and lung site (Fig. S5B, C).
We also performed the Ro/e analysis to assess organ-specific

and subtype-specific enrichment of cell clusters (Fig. S6A, B).
Endothelial cells and HLA-DR+ epithelial cells were found to be
increased in lung metastasis compared to BC, while CD57+

epithelial cells were specifically enriched in BC. In terms of
molecular subtype heterogeneity, CD57+ epithelial cells, S100A9+

epithelial cells, and CD163+ macrophages were significantly
enriched in TNBC, whereas CD15+ epithelial cells were predomi-
nantly abundant in HER2 overexpression BC. Notably, endothelial
cells and HLA-DR+ epithelial cells showed significant enrichment
in lung metastasis compared to BC, particularly in the triple-
negative subtype (Fig. S6C).
Overall, the differences in TME components between primary

BC and lung metastasis were illustrated through IMC analysis.

Cellular neighborhoods and cell interaction/avoidance
analysis revealed the organ-specific immune spatial topology
The spatial configuration of the TME plays a crucial role in tumor
metastasis and response to therapy. Consequently, we conducted
an in-depth analysis of regional CN to unveil the multicellular
structures within BC and lung metastasis. We defined the CN as
the nearest 20 cells to the center cell (Fig. S7A). To visualize organ-
specific cell interactions and functional units within the TME of BC,
we generated network, Voronoi, and CN patch plots for each IMC
image (Figs. 3A and S8). A total of 15 CNs were identified and
annotated based on major cell types (Fig. 3B). The distribution of
each CN across BC and lung metastasis in different patients is
illustrated in pie plots and histograms (Figs. 3C and S7B). The
cellular compositions of these CNs fully mirrored the architectural
features of the TME, including spots enriched with HLA-DR+

epithelial cells alongside endothelial cells (CN6), regions rich in
stromal cells & C1QC+ macrophages (CN2), those abundant in
CD57+ epithelial cells and CD163+ macrophages (CN15), and
areas dominated by CD15+ epithelial cells (Fig. 3D).
Subsequently, we proceeded to compare the enrichment levels

of each CN between BC and lung metastasis (Fig. 3E, F). The Ro/e
analysis indicated a higher abundance of CN6 in lung metastasis.
Furthermore, CN6 was found to be enriched in the triple negative
subtype compared to other molecular subtypes. In contrast, CN1
and CN5 exhibited enrichment in the HER2 overexpression subtype
(Fig. S9A). Notably, CN6 displayed minimal enrichment in the
breast site of the triple negative subtype, whereas the paired lung
metastasis demonstrated a significant abundance of CN6 in this
subtype (Fig. S9B). Furthermore, paired analysis demonstrated that
the frequencies of CN6, enriched with HLA-DR+ epithelial cells and
endothelial cells, were significantly higher in primary breast tumors
than in lung metastases. Finally, we conducted regional correlation
analysis to delineate spatial interaction and avoidance pairs in the
topology of BC lung metastasis (Figs. 3G, H and S7C). Endothelial
cells were found to interact frequently with HLA-DR+ epithelial
cells, thereby confirming the cell module comprising HLA-DR+

epithelial cells and endothelial cells (CN6).
In conclusion, utilizing advanced spatial analysis based on IMC,

a distinct cell hub was identified, revealing organ-specific proper-
ties between the primary site and lung metastasis.

BC lung metastasis demonstrated a more exhausted TME
compared to primary BC
As immunotherapy emerges as a pivotal therapeutic option in BC
treatment, we conducted an investigation into the expression

patterns of key T cell regulators across primary breast tumors and
lung metastases. Initially, the expression profiles of all IMC markers
were visualized via a heatmap (Fig. S10A). At the patient level,
markers such as αSMA, CD68, GZMB, S100A9, CD31, CD15, and
CD208 exhibited differential expression between BC and lung
metastases. Notably, TIM3 and PD-1 showed significant upregula-
tion on T cells derived from lung metastases compared to those
from BC, particularly evident in the triple-negative subtype (Fig.
S10B). Subsequently, we conducted mIF staining for validation
(Fig. 4A). Antibodies of CD3, CD8, CD31, CK, PD-1, HLA-DR, DAPI
were used to depict the TME ecosystem of BC lung metastasis. We
firstly investigated the distance of HLA-DR+ epithelial cells and
exhausted T cells to endothelial cells. The distance of HLA-DR+

epithelial cells and exhausted T cells to the nearest endothelial
cells was plotted (Fig. 4B) and the spatial plot showed significant
cell network between endothelial cells and HLA-DR+ epithelial
cells in BC lung metastasis (Fig. 4C). Additionally, the pie plot
revealed a shorter distance between HLA-DR+ epithelial cells and
exhausted T cells to endothelial cells in each subtype, with a
notable emphasis on the triple negative subtype (Fig. 4D).
A recent study defined cells within 25 μm as having “direct

interaction” in IMC and mIF analyses [24]. To validate the cellular
hub identified by IMC in human breast tumor lung metastasis, we
performed similar analysis (Fig. 4E). Consistent with our previous
definition, we considered cells within a 20 μm window as having
direct interaction. Our results demonstrated that all three BC
subtypes showed an increased proportion of cell hubs in lung
metastases compared to primary breast tissue, particularly in the
triple-negative subtype (Fig. 4F).
Taken together, we revealed an exhausted TME in lung

metastasis compared with that in BC, especially in triple negative
subtype. The mIF staining and spatial analysis further validated the
significant cell network between HLA-DR+ epithelial cells and
endothelial cells.

Paired spatial resolved proteomics analysis unveiled the
underlying biological mechanism in BC lung metastasis
Given the limited number of markers available with the IMC
technique, it becomes challenging to thoroughly explore
potential pathway alterations and molecular activities within
tumor tissues. To deepen our understanding of the spatial
diversity and potential mechanisms underlying BC lung metas-
tasis, we have developed a MS-based technique which extended
compatibility to archived FFPE sections. This filter-aided expan-
sion proteomics (FAXP) method combines manual tissue micro-
dissection and significantly increase in volumetric resolution,
peptide yield, as well as protein identifications, which enhances
spatial resolution through tissue expansion, with bottom-up MS-
based proteomic analysis [25, 26]. This methodology involves
slicing tissue samples sequentially and conducting both IMC and
spatial proteomics analysis to investigate the molecular char-
acteristics within the ROIs identified by IMC (Fig. 5A). Sequential
sectioning of tumor tissues was performed, with adjacent pairs
selected for processing. One section was stained with H&E for ROI
selection, while the other was used for IMC analysis. The H&E-
stained sections were then employed for spatial proteomics
studies. After HE staining, tissue expansion was carried out, and
the selected ROIs were expanded for dissection. These dissected
ROIs were subsequently analyzed by LC‒MS/MS. By integrating
IMC and spatial proteomics, we were able to uncover molecular
features.
As demonstrated in Fig. 5A, we selected the exactly same 36

ROIs consistently across 18 samples. Tissue microdissection is
facilitated by tissue expansion and staining via embedding it into
a swellable hydrogel. Subsequently, peptide extraction and
analysis are performed using a trapped ion mobility spectrometry
(tims)TOF Pro-mass spectrometer in parallel accumulation-serial
fragmentation combined with data-independent acquisition
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Fig. 3 Organ-specific immune spatial topology revealed by cellular neighborhoods (CNs) and cell-cell interaction and avoidance analysis.
A Representative Network, Voronoi and CN patch plots of TME in breast cancer and paired lung metastasis to visualize organ-specific cell
interactions and functional units. B Identification of 15 distinct CNs from the 29 cell clusters in breast cancer and lung metastasis. C The
distribution of each CN across breast cancer and lung metastasis illustrated in pie plots. D Cellular compositions of distinct CN and their
corresponding abundances in each CN. E Tissue prevalence of each cluster on IMC images estimated by the Ro/e analysis. F Enrichment of
each CN between breast cancer and lung metastasis. **P < 0.01 (G) Regional correlation analysis delineating spatial interaction and avoidance
pairs in the topology of breast cancer lung metastasis. H Cell-cell interaction and avoidance analysis revealing the spatial cell interactions on
IMC images.
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(diaPASEF) mode. Quality control of the MS data showed robust
reproducibility for both global precursors and proteins (Fig. S11A,
B). Consequently, we have confirmed that paired spatial
proteomics maintains high quality and provides detailed protein
information regarding the components of the TME.

Therefore, we investigated the differences in signaling path-
ways underlying BC lung metastasis using ssGSEA analysis on
spatial proteomics data. Unsupervised analysis of immunotherapy-
related and hallmark pathways revealed significant intratumoral
heterogeneity across breast and lung samples, indicating both
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patient-related and site-related variability (Fig. 5B). Subsequently,
we conducted an analysis of DEPs between BC tumors and their
paired lung metastases. Notably, SEMA3B, MMP28, and CXCL17,
among others, were up-regulated, while KRT20, COL2A1, and
CD70, among others, were down-regulated (Fig. 5C). Leveraging
the DEPs, we performed GO analysis (Fig. 5D), revealing enriched
biological processes such as positive regulation of cell adhesion
and regulation of chemotaxis, consistent with the functions of up-
regulated proteins in lung metastasis. Conversely, processes like
collagen fibril organization, cytoplasmic translation, and endoder-
mal cell differentiation were enriched in BC tissues. Furthermore,
ssGSEA analysis highlighted the upregulation of apical surface and
KRAS signaling, as well as cholesterol homeostasis, in lung
metastasis, while interferon alpha and gamma responses were
positively regulated in BC tissues compared to lung metastasis. At
the paired sample level, GSEA results unveiled a down-regulated
interferon gamma response in lung metastasis and an upregu-
lated estrogen response in breast tissue samples, consistent with
ssGSEA and GO analyses. Hence, we demonstrated molecular
differences between BC tissues and their paired lung metastases
(Fig. 5E, F).

WGCNA indicated the enriched molecular features associated
with spatial TME components
To explore deeper into the molecular mechanisms underlying the
cellular components within the TME of breast lung metastasis, we
conducted WGCNA. The frequency of TME component cells was
determined using IMC in each ROI. This information was then
correlated with the protein module identified by WGCNA.
Subsequently, the potential biological processes associated with
each TME component were investigated (Fig. 6A). Through
analysis of mean connectivity and scale independence, a soft
threshold of 8 was chosen (Fig. S12A, B). Subsequently, all proteins
were assigned to 11 protein modules using an unsupervised
clustering method (Fig. 6B), with 11 colors representing the
distinct protein modules, each comprising proteins with similar
expression patterns (Fig. 6C). We then correlated the cell
frequencies of identified cell components via IMC with each
module (Fig. 6C). For example, endothelial cell frequency
exhibited a negative correlation with the yellow module, whereas
CD57+ epithelial cell frequency showed a positive correlation with
the yellow module (Fig. 6D, E). Similarly, S100A9+ and HLA-DR+

epithelial cells were both positively correlated with the red
module (Fig. 6F, G). Next, we identified proteins with the highest
protein significance for each cell type, indicating those proteins
most closely associated with the selected cell type (Fig. 6D–G, abs
(protein significance) >0.6). Using these selected hub proteins for
each cell type (Fig. 6H–K), we conducted GO analysis for the
respective cell types (Fig. 6L–O). Endothelial cells exhibited terms
related to cellular energy processes (Fig. 6L), CD57+ epithelial cells
were enriched with oxidative phosphorylation processes (Fig. 6M),
S100A9+ epithelial cells displayed metabolic process enrichments
(Fig. 6N), while HLA-DR+ epithelial cells were associated with lipid
catabolic processes (Fig. 6O). In summary, WCGNA analysis
revealed the molecular characteristics associated with the TME

components during BC lung metastasis, as highlighted by spatial
proteomics analysis.

snRandom-seq analysis of BC lung metastasis
We revealed greater number of endothelial cells in BC lung
metastasis at a spatial level, especially in TNBC. As IMC represents
a small area of TME component in tumor tissues. To further
validate the organ-specific TME of BC lung metastasis at single-cell
resolution on the whole slide level, we performed snRandom-seq
on 3 treatment-naïve FFPE tissue samples from primary BC (n= 3)
and lung metastases (n= 3) using previously reported technology
(Fig. 7A) [27]. The unsupervised clustering analysis classified the
100,235 cells into eight clusters (Fig. 7B). Each cluster was
identified as a broad cell population with its canonical markers
(Fig. 7C). We further calculated the inter-patient and inter-organ
proportions and Ro/e analysis in each cell population to
characterize the organ-specific TME of BC lung metastasis
(Fig. 7D, E). The tissue enrichment of each cell population was
evaluated by Ro/e analysis. Endothelial cells were relatively
enriched in lung metastasis at a FFPE whole slide image level
(Fig. 7E), which is consistent with the previous results from IMC
and mIF. Due to the limitations of snRNA-seq, we were unable to
identify exhausted T cells and HLA-DR+ epithelial cells, as only
RNA expression from nuclei can be extracted from FFPE samples.
Consequently, we re-clustered the endothelial cells to delineate
subpopulation specificity in TNBC lung metastasis, resulting in the
identification of 14 distinct clusters (Fig. 7F). Utilizing markers for
lymphatic and vascular endothelial cells (Fig. 7G), we identified
591 lymphatic endothelial cells and 5431 vascular endothelial cells
(Fig. 7H). Further characterization revealed that the vascular
endothelial cells could be classified into three subtypes: arterial
endothelial cells, general capillary endothelial cells, and venous
endothelial cells (Fig. 7I, J). Notably, general capillary endothelial
cells exhibited relative enrichment in lung metastasis, as observed
at the level of FFPE whole slide images (Fig. 7K). In summary,
snRNA-seq analysis provided insights into the detailed subpopula-
tions of endothelial cells enriched in lung metastasis compared to
those present in primary BC.

DISCUSSION
BC lung metastasis presents a key challenge in clinical manage-
ment, indicating the importance of unraveling the complexities of
the TME and its impact on treatment response [28, 29]. Recent
studies have turned towards spatially organized cell populations
within metastatic lesions as potential therapeutic targets across
various tumor types [30, 31]. Notably, primary and metastatic
tumors exhibit distinct spatial cellular hubs, influencing their
responses to different therapies [32]. Exploring organ-specific
metastasis mechanisms and their unique ecosystems holds
promise for refining treatment approaches [33]. mBC pose a
challenge in obtaining sufficient fresh tissue for conducting
scRNA-seq or spatial transcriptome analysis, as patients with
advanced TNM stage IV mBC often miss the window for surgical
intervention. As a result, the TME of lung-specific metastases using

Fig. 4 Differences in exhausted T cell phenotype between primary breast cancer and lung metastasis. A The mIF staining for CD3 (cyan),
CD8 (yellow), CD31 (green), PDCD1 (red), HLA-DR (purple), Pan-CK (orange) and DAPI (blue) in breast cancer and paired lung metastasis. Scale
bar = 1mm and 100 μm, respectively. B The spatial networks of HLA-DR+ epithelial cells and PD1+ T cells to endothelial cells in breast cancer
and lung metastasis. The white line indicates the connection between cells. The CD3 (cyan), CD8 (yellow), CD31 (green), PDCD1 (red), HLA-DR
(purple), Pan-CK (orange) and DAPI (blue) was shown with the same color in Fig. 4A. Scale bar = 100 μm. C The spatial plot of HLA-DR+

epithelial cells and PD1+ T cells to endothelial cells in breast cancer and lung metastasis. D The pie chart displaying the proportion of distance
from HLA-DR+ epithelial cells and PD1+ T cells to endothelial cells. E HLA-DR+ epithelial and endothelial cell hub in breast and lung metastasis
sites validated by mIF spatial analysis. Cell hub was defined as the region within a 20 μm proximity between the two cell types. HLA-DR+

epithelial cells were labeled with rosein, endothelial cells were labeled with yellow, other cells were labeled with gray, and DNA was labeled
with blue and target marker was labeled with red. F Difference in formation of cell hubs between primary breast tissue and lung metastases in
different subtypes.
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Fig. 5 Paired spatial proteomics unveiled underlying biological mechanism of breast cancer lung metastasis. A Overview of the design
and workflow of mass spectrometry-based spatial proteomics applied to formalin-fixed paraffin-embedded tissue samples from paired
primary and lung metastatic lesions. B Differences in immunotherapy-related and hallmark pathways in each patient and each site revealed by
unsupervised analysis. C Differentially expressed proteins between breast cancer and paired lung metastasis. D–F The potential biological
functions and relevant signaling pathways evaluated by gene ontology analysis, gene set enrichment analysis (GSEA) and single-sample GSEA
analyses.
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Fig. 6 Weighted Gene Co-expression Network Analysis (WGCNA) showing enriched molecular features associated with each TME
component. A Overview of the design for integrated IMC and spatial-proteomics based WGCNA. B Proteins were assigned to 11 cell modules
using an unsupervised clustering method. C Each cell module correlated with cell frequencies of identified cell components via IMC. D–G The
association of protein significance and module membership for selected cell types and protein module showing by Pearson’s coefficient.
H–K The hub proteins identified for the respective cell types. L–O Gene ontology analysis for the respective cell types.
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Fig. 7 TME atlas of primary triple negative breast cancer and lung metastases by scRandom-seq. A Overview of the design for snRandom-
seq. FFPE samples from primary TNBC and lung metastasis were collected for single-cell nuclei transcriptomic sequencing. B UMAP plot of
major cell types from all the samples. C The volcano plot of highly variable genes for the major clusters. D The frequency of each cell cluster
presented as a proportion of total cells in each sample. E Tissue prevalence of each cell cluster estimated by the Ro/e analysis. F UMAP plots of
endothelial cells (ECs) showing distinct subclusters. G Dot plot showing the markers for lymphatic endothelial cell and vascular endothelial
cell. H UMAP plots of lymphatic endothelial cell and vascular endothelial cell. I Dot plot showing the markers for EC arterial cell, EC general
capillary and EC venous. J UMAP plots of all four cell clusters. K Tissue prevalence of each EC cluster estimated by the Ro/e analysis.
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paired samples remains largely unexplored, especially at a single-
cell spatial resolution. In our study, we developed a comprehen-
sive strategy leveraging cutting-edge techniques such as IMC,
spatial proteomics and mIF to explore spatial proteomic and RNA
profiling within BC and paired lung metastatic lesions and identify
potential therapeutic targets. Through the analysis of paired
samples, we delineated the spatial landscape and characterized
the heterogeneous atlas of the TME at a single-cell resolution.
Importantly, all samples utilized in our study were FFPE samples,
allowing for the application of these advanced techniques without
reliance on fresh tissue.
BC reprograms the lung microenvironment to generate pre-

metastatic niches, and pro-angiogenic factors (such as vascular
endothelial growth factor) is one of the initial molecules involved
[3]. Angiogenesis plays a key role in tumor growth and metastasis.
After decades of endocrine and cytotoxic chemotherapy, targeted
therapies have brought new treatment options such as angiogen-
esis inhibitors, HER2-targeted therapies, cyclin-dependent kinase 4
and 6 (CDK4/6) inhibitors [5]. Combination chemotherapy with
bevacizumab and some small-molecule tyrosine kinase inhibitors
(TKIs) targeting angiogenesis may improve the prognosis of BC
patients [5]. Few studies have also explored the use of Endostar in
BC [34, 35]. These clinical treatment options are consistent with
our findings of increased endothelial cells in lung metastases.
Regarding immunotherapy, the introduction of immune check-
point inhibitors in chemotherapy resulted in a higher treatment
response and longer survival, but is currently mainly limited to
TNBC [5]. In the meanwhile, we found that C1QC+ Mac, DC,
GZMB+ CD8+ T cells, proliferative CD8+ T cells were significantly
increased in lung metastases, indicating an immune-exhausted
TME. Hence, both immunotherapy and anti-angiogenic therapy
may act as promising strategies for BCs with lung metastasis.
We further identified a cell module enriched with HLA-DR+

epithelial cells and endothelial cells. This cellular composition
suggests an intricate spatial interaction between HLA-DR+

epithelial and endothelial compartments within the TME. The
differential abundance of HLA-DR+ epithelial and endothelial cell
hub between primary breast tumors and lung metastases high-
lights its dynamic role in the metastatic process. Furthermore, the
observed spatial interactions between endothelial cells and HLA-
DR+ epithelial cells underscore the complex interplay between
angiogenesis and immune activation within the TME by IMC. This
also suggests that interventions targeting both angiogenesis and
immune evasion pathways, such as anti-angiogenic combined
immunotherapy, may disrupt the spatial organization of HLA-DR+

epithelial and endothelial cell hub to enhance therapeutic efficacy.
Li et al. have demonstrated a dose-dependent synergy between
anti-angiogenic therapy and programmed cell death protein-1
(PD-1) blockade, showcasing efficacy in 12 cases of TNBC [36].
However, the scope of this combination strategy remains limited,
necessitating further research to address this limitation. In our
study, the combined use of IMC and mIF enabled us to uncover
the presence of HLA-DR+ epithelial cells and exhausted T cells
clustering around endothelial cells, a phenomenon that was
particularly pronounced in the triple-negative subtype. Leveraging
anti-angiogenic therapy has the potential to disrupt this
specialized cellular hub, leading to the exposure of HLA-DR+

epithelial cells and exhausted T cells. This, in turn, creates an
opportunity for immune checkpoint inhibitor (ICI)-based immu-
notherapy to reverse the exhausted T cells into a cytotoxic
phenotype, thereby making the HLA-DR+ epithelial cells suscep-
tible to targeted intervention.
Moreover, snRNA-seq revealed the TME exhibited a less Treg

phenotype in lung metastasis than that in BC, which indicated the
“reversed” un-exhausted T cells after ICI treatment may play more
crucial roles. Therefore, based on our findings, we proposed that
anti-angiogenic therapy may sensitize BC to PD-1 blockade in
patients with BC lung metastasis, especially in TNBC.

Owing to the limited availability of samples, the comparison
between different molecular subtypes was difficult in this study.
Further collection of surgical specimens is necessary to investigate
the immune heterogeneity between different pathological sub-
types. In addition, more samples are needed to investigate the
impact of differentiation status on the spatial topology of BC lung
metastasis. Due to the limitations of snRNA-seq, the identification
of HLA-DR+ epithelial cells is not feasible. Consequently, this
constraint precludes the analysis of ligand-receptor interactions
between HLA-DR+ epithelial cells and endothelial cells. The other
criticism of this work is the lack of functional aspect of the features
that have been identified from this data analysis.
In summary, we have utilized a comprehensive approach to

depict the spatial multi-omics profiling of paired BC and lung
metastasis samples. Our study identified a spatial endothelial-HLA-
DR+ epithelial cell hub within BC lung metastasis, which may play
a pivotal role in determining response to anti-angiogenic therapy
and immunotherapy. Therefore, our results may help develop
personalized treatment strategies and improve patient outcomes
in BC lung metastasis.

METHODS
Patients and samples
A total of 9 BC patients with oligo-recurrent lung metastasis after surgery
in the First Affiliated Hospital, Zhejiang University School of Medicine
(FAHZU) were retrospectively selected. Matched surgical specimens of
primary breast tumor and lung metastasis were collected. The clinical
features of these patients are shown in Supplementary Table 1. Samples
for IMC, spatial proteomics and mIF were taken from tumor area. This study
was carried out in strict accordance with the standards of the Declaration
of Helsinki and was approved by the Ethics Committee of FAHZU (Ethical
number: IIT20240530A). Informed consent was obtained from all the
patients or their valid proxies.

IMC analysis
Nine samples of primary BC and nine matched lung metastases were
selected for IMC and downstream analysis. The FFPE samples were
successively sliced, and one of the slices was taken from each patient for
hematoxylin-eosin (H&E) staining. Experienced pathologists then identi-
fied one or two regions of interest (ROIs) of 500 × 500 μm2 where immune
cell infiltration was most abundant according to the morphological
structure shown on H&E slides. Immune cell infiltration was characterized
by a large number of small cell clusters that are predominantly blue
stained, ranging from 1000 to 7000 square microns. Immune cells can be
observed both peripherally and internally in tumor tissue. Adjacent
sections were labeled with pre-designed IMC antibodies (Supplementary
Table 2). Based on our previously published study [37], the ROIs were
captured as square regions with a laser intensity of 400 Hz. Then the
collected raw data were preprocessed by overflow signal compensation,
image denoising, image contrast enhancement and cell segmentation.
The individual cell or component in each channel of IMC image was
segmented by the connection-sensing segmentation method [21]. The
region props function in MATLAB was used to identify connected
components within the image for cell segmentation. Artifacts were
eliminated if the centroid of the nearest core exceeded 15 pixels in the
case of other membrane channels. Each marker expression was normal-
ized to the 99th percentile of each channel. The “Harmony” package
(version 0.1.0) and “Rphenograph” (version 0.99.1) with in 100 nearest
neighbors were used separately to correct batch processing effects and
cell clustering. The cluster means were presented in the form of heatmaps
and were utilized for further annotation. The “imcRtools” package (version
1.0.2) was used for IMC downstream data analysis. The 20 nearest
neighboring cells of each cell were determined as cellular neighborhood
(CN) based on Euclidean distance. Then the neighboring cells were
clustered through K-means clustering (k= 15) based on the 29 cell
clusters, along with endothelial cells and epithelial cells [38]. To verified
CNs, the Voronoi diagrams were superimposed over the corresponding
original IMC images. A permutation test method of the “imcRtools”
package (version 1.0.2) was used to evaluate the interactions/avoidance
between different cell clusters within each CN to explore spatial cell-cell
interactions [39].
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Tissue distribution of clusters
We calculated the ratio of observed to expected cell numbers (Ro/e) for
each cluster in different tissues to quantify the tissue preference of each
cluster [40, 41]. The expected cell numbers for each combination of cell
clusters and tissues were obtained from the chi-square test. One cluster
was identified as being enriched in a specific tissue if Ro/e > 1.

Spatial proteomics and downstream analysis
Paired FFPE samples of primary breast and lungmetastases were prepared into
4 μm slices. Hydrogel embedding, expansion, staining, imaging, microdissec-
tion, tissue polypeptide recovery, and mass spectrometry of recovered
polypeptides were performed as previously reported [25]. After being treated
with BT buffer and MES buffer, the slices were incubated with protein
anchoring solution for 12 h. The samples were then washed with anchoring
stop buffer, reacted with Activated Monomer Solution in gelation chamber at
4 °C for 12 h for gelation, and transferred to vacuum oven for polymerization
reaction. The resulting tissue-hydrogel composite was immersed in a
homogeneous buffer for expansion. After Coomassie staining and continuous
washing, tissues were imaged using Zeiss Fluorescence Stereo Zoom
Microscope. Microdissection were performed from ROIs in the expanded
Coomassie-stained samples through destaining, dehydration, digestion and
peptide collection. Finally, the samples were analyzed by liquid chromato-
graphy (LC)-mass spectrometry (MS)/MS. The peptide extraction and analysis
are performed using a hybrid trapped ion mobility spectrometry (TIMS)
quadrupole time-of-flight mass spectrometer (timsTOF-Pro) in parallel
accumulation-serial fragmentation combined with data-independent acquisi-
tion Parallel Accumulation Serial Fragmentation (diaPASEF) mode as previous
described [25, 42]. Bruker otofControl (version 6.2) and HyStar (version 5.1)
were used for MS data acquisition. The data-dependent acquisition (DDA) data
were analyzed using the FragPipe (version 15.0) platform and the MSFragger
(version 3.1.1) [43, 44]. The self-built library is further used for analysis of
PulseDIA data by DIA-NN (version 1.7.15) [45]. The differently expressed
proteins (DEPs) analysis was performed using the “limma” package [46]. Gene
Ontology (GO) analysis was performed using the “clusterProfiler” package
(version 4.10.0) [47]. The single-sample gene set enrichment analysis (ssGSEA)
score for each gene set was calculated using the “Gene Set Variation Analysis
(GSVA)” package in R software (version 1.50.0) [48]. Weighted Gene Co-
expression Network Analysis (WGCNA) was performed using the default
parameter and standard pipeline [49].

H&E staining
FFPE samples were continuously sliced into 4μm flakes. The slices were
then successively dewaxed with xylene, rehydrated with graded ethanol,
and rinsed with PBS. Next, the slices were dyed with hematoxylin at room
temperature for half an hour and rinsed again with PBS. Soaking in
ammonia turned the nuclei in the slices from red to bluish-purple. After
cleaning with 75% alcohol for two minutes, the slides were dyed with
eosin at room temperature for 1 h. Then we rinsed the slices directly with
graded alcohol. Finally, anhydrous alcohol was replaced with xylene and
then mounted on slides. The slides were examined using a light
microscope (Leica), and the images were analyzed using Image-Pro Plus
software (version 6.0).

Immunohistochemistry (IHC) staining
BC tissue slides (4 μm) were dewaxed with xylene and rehydrated with
graded alcohol. Microwave heating was used to induce antigen epitope
retrieval and blocking solution (Proteintech, B900780) was then used to
block at room temperature for 1 h. The slides were incubated with primary
antibody against CD57 (1:50, MA5-16948, Invitrogen) overnight at 4 °C.
After washing with PBS for 3 times, the slides were then incubated with a
peroxidase-conjugated (HRP) secondary antibody (31430, Invitrogen) for
10minutes. The slides were examined by a light microscope (Leica) after
dehydration, cleaning, and sealing. The images were analyzed using
Image-Pro Plus software (version 6.0).

mIF staining
FFPE samples of BC and lung metastases were sequentially stained using a
TSA seven-color kit (H-D110071-50T, Yuanxibio). H&E and IHC staining
were performed to test the antibody concentration for mIHC staining
followed by the Society for Immunotherapy of Cancer (SITC) mIF staining
guidelines [50]. The slides were washed successively in tris buffered saline
with tween 20 (TBST) buffer and then transferred to preheated
ethylenediaminetetraacetic acid (EDTA) solution for 30minutes with

microwave heating at 60 °C for dewaxing. After cooling to room
temperature, the slides were incubated with anti-CD3 antibody (1:200,
Abcam) for at least 30 minutes followed by washed with TBST for 3 times.
Then a HRP secondary antibody (#DS9800, Leica) were added and
incubated at room temperature for 10minutes. TSA 520 working solution
was added to the sample area for 10minutes according to the
manufacturer’s instructions, followed by washing with TBST for 3 times.
Repeat the same procedure for subsequent antibodies and fluorescent
dyes in the following order: anti-CD3 (1:200, Abcam)/TSA 480, anti-
CD31(1:200, CST)/TSA 520, anti-CD8 (1:100, Invitrogen)/TSA 570, anti-PD-
1(1:100 CST)/TSA 620, anti-HLA-DR (1:1000, Abcam)/TSA 690, anti-Pan-CK
(1:200, Abcam)/TSA 780. Wash each slide with distilled water and cover
manually. The nuclei were stained with DAPI solution (Thermo Fisher
Scientific, 62248) for 10minutes. Pannoramic 250 FLASH Tissue Imaging
System (3D HISTECH) was used to scan the slides at 20× magnification.

Single-nucleus RNA-seq (snRNA-seq)
The nuclei of paired FFPE samples were extracted for snRNA-seq. The
cross-sectional area of each sample embedded in the paraffin block was be
greater than 0.3 cm2, and 2–3 paraffin rolls from each sample was cut in
total, with the thickness of each roll about 20 μm thick. Total RNA was
extracted from a small amount of tissue for RNA quality control, and the
integrity of RNA was evaluated based on the DV200 value. Follow-up
experiments were only conducted for samples with DV200 greater than
40%. Droplet generation, single cell encapsulation, and cDNA capture were
performed using the VITAcruizer Single-Cell Partitioning System (M20
Genomics). Using VITApilote High-Throughput Single-Cell Transcriptome
Kit for FFPE samples (M20 Genomics), the procedures of dewaxing and
blocking, RNA reverse transcription, single nucleus suspension preparation,
single cell barcoding, cDNA amplification and library construction were
performed successively according to the instructions. Qualified libraries
were then selected for next-generation sequencing through the NovaSeq
6000 sequencing platform (Illumina). The FASTQ files were processed using
VITAseer Bioinformatics Software (M20 Genomics). Specifically, sequencing
reads in FASTQ format were aligned to the human reference genome
(GRCh38) using the default parameters of the STAR software. A raw count
matrix for each sample was generated through unique molecular
identifiers (UMIs) counting and preliminary barcode screening. Following
removal of low-quality or ambient barcodes based on UMI thresholds, the
filtered gene expression matrix within retained high-confidence cell
barcode were then were used for downstream analysis.

SnRNA-seq data analysis
The “Seurat” R software package (version 4.4.0) was used for quality control
and integration. To filter out poor quality data, we first removed genes covered
by fewer than three cells. Then, we filtered out cells expressing <500 or >5000
genes and containing <400 or >25,000 UMIs to exclude barcodes associated
with empty partitions or double units. Doublets and multiplets were removed
using scDblFinder with default parameters. Cells with more than 15%
mitochondria were also removed. The integrated analysis in the Seurat v4
function “IntegrateData” was used to integrate and embed individual cells
from different individuals into a shared low-dimensional space. When the
integral matrix was generated, an unsupervised graph-based clustering
algorithm was used to cluster individual cells based on their expression,
which was implemented in Seurat with default parameters. The “Normal-
izeData” function with default parameters was used to normalize the UMI
count matrix. To transform the normalized gene expression matrix, the natural
logarithm was carried out, and 2,000 highly variable genes were identified by
“FindVariableFeatures” function with “vst”method. All the cell types were then
clustered through these 2000 variable genes. After regressing the UMI-counts,
20 principal component analyses (PCA) were applied to the dataset to reduce
dimensionality. The first round of clustering was performed using the
“FindClusters” function on 20 PCs with a resolution of 1.2, each of which
was annotated with knownmarkers. The Uniform Manifold Approximation and
Projection (UMAP) method was used for nonlinear dimensionality reduction.
Each cluster was characterized using the “FindAllMarkers” procedure in Seurat,
which identified the marker based on the average expressed log fold change
(FC). The Wilcoxon Rank-Sum test by default was used. Characteristic genes
and known lineage-specific markers were used for clustering annotation.

Statistical analysis
R software (version 4.0.4) was used for statistical analyses. Statistical tests
were selected based on data distribution and its variability. Student’s t test,
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Mann-Whitney U test and Kruskal-Wallis test were used to assess statistical
significance. The P-value of DEPs was adjusted with Benjamini and
Hochberg FDR method. The correlation was calculated with Pearson’s
coefficient method. Statistical significance was defined as P < 0.05.

DATA AVAILABILITY
All data generated by this study have been deposited in the Chinese national
genomics data center (https://ngdc.cncb.ac.cn), under accession number NGDC:
OMIX008849. All codes used for association studies are available on request.
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