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ABSTRACT
Compared to classical drug screening, single-cell screening not only significantly enhances throughput but also provides richer 
transcriptional response information. In this study, we employed the high-throughput and high-sensitive single-nucleus se-
quencing platform, snHH-seq, to screen clinical drug combinations with anti-hepatocellular carcinoma (HCC) activity. Single-
cell transcriptomics analysis revealed that the HY combination (HHT and YM155) exhibited the strongest suppression of tumour 
cell proliferation, a finding validated by both in vitro and in vivo functional assays. Further investigation suggested that HY trig-
gers ferroptosis, as evidenced by rescue from cell death upon co-treatment with the ferroptosis inhibitor Fer-1. Subcluster analysis 
identified distinct tumour cell subclusters' responses to HY treatment. A gene regulatory network analysis highlighted JUN as a 
key regulator mediating proliferation inhibition, primarily active in the apoptotic cell subcluster. These findings illustrate how 
integrating high-throughput screening with mechanistic dissection can accelerate the discovery of targeted drug combination 
therapies, and offer a blueprint for precise interventions using pathway vulnerabilities and cellular heterogeneity in HCC.

1   |   Introduction

The advent of single-cell sequencing technology has revolution-
ised life sciences research, much like the leap from conventional 
microscopy to super-resolution imaging enabled unprecedented 
precision in visualising biological structures [1, 2]. This technol-
ogy now empowers researchers to address fundamental ques-
tions with single-cell resolution, unlocking a very broad range of 
applications such as construction of cell atlases for various spe-
cies, analysis of cellular heterogeneity within tissues, discovery 

of novel cell subpopulations, identification of disease biomark-
ers, and reshaping of patient stratification [3–10].

In the field of high-throughput drug screening, single-cell 
sequencing technology offers distinct advantages over tra-
ditional bulk transcriptomic or phenotypic approaches. One 
key advantage is high-throughput detection, allowing a single 
experiment to test multiple drugs across different doses, time 
points, concentrations, and combinations. Moreover, it cap-
tures rich transcriptional responses information, revealing 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.

© 2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

Mengmeng Jiang, Haide Chen, Guoxia Wen, and Yuqing Mei authors contributed equally.  

https://doi.org/10.1111/cpr.70148
https://doi.org/10.1111/cpr.70148
mailto:
https://orcid.org/0009-0000-0870-4254
https://orcid.org/0000-0002-1930-3867
https://orcid.org/0000-0001-6544-8242
https://orcid.org/0000-0003-3438-0139
https://orcid.org/0000-0001-8266-6188
https://orcid.org/0009-0003-9487-9414
https://orcid.org/0009-0005-0629-4745
https://orcid.org/0009-0003-7246-9991
https://orcid.org/0009-0008-0243-4554
https://orcid.org/0000-0003-3201-7635
https://orcid.org/0000-0001-7024-0200
https://orcid.org/0000-0002-1716-4621
mailto:
https://orcid.org/0000-0002-6006-2727
mailto:mmjiang@zju.edu.cn
mailto:jingjingw@zju.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcpr.70148&domain=pdf&date_stamp=2025-11-27


2 of 15 Cell Proliferation, 2025

drug-targeted subpopulations, cluster-specific transcriptional 
changes, pathway perturbations, and dose–response spectra. 
Critically, this approach eliminates batch effects by reducing 
operational errors between experiments and reduces costs by 
consolidating screening into a unified workflow. For instance, 
McFarland et  al. [11] leveraged single-cell RNA sequenc-
ing technology (scRNA-seq) to achieve high-throughput, 
multi-dimensional analysis of cancer cells' transcriptional 
responses to drug perturbations. Srivatsan et al. [12] treated 
three tumour cell lines with 188 different drugs, capturing 
approximately 650,000 single-cell transcriptomes in a single 
experiment, systematically revealing the mechanisms of ac-
tion for multiple types of drugs using sci-Plex. Furthermore, 
single-cell sequencing technology is widely applied in the 
mechanistic elucidation of precision medicine for disease 
treatment. In cervical cancer research, scientists delineated 
eight cell types and five subpopulations of malignant epithe-
lial cells, validated PLOD2 as a prognostic gene with thera-
peutic potential [13]. In the study of muscle regeneration, Feng 
et al. [14] revealed that Zn-DHM treatment increased the ex-
pression of M2 macrophage markers and enhanced the pro-
liferation and differentiation capacity of muscle stem cells by 
single-cell profiling [14].

Globally, hepatocellular carcinoma (HCC) is one of the most 
malignant tumours with high incidence and mortality rates, 
posing a significant threat to human health [15–17]. Due to 
its covert progression and rapid development, most patients 
are diagnosed at end-stage, resulting in low surgical resec-
tion rates, limited therapeutic efficacy, and poor prognosis. 
Empirical evidence has shown that combination targeted ther-
apies have emerged as a promising strategy to address these 
challenges [18, 19]. A study involving 47 end-stage HCC pa-
tients demonstrated that the combination of sintilimab (anti-
PD-1 antibody) and apatinib (VEGFR2 inhibitor) as a first-line 
treatment achieved good anti-tumour efficacy and safety [20]. 
Similarly, research on 63 HCC patients showed that the com-
bination of tyrosine kinase inhibitors (TKIs) and anti-PD-1 
antibodies significantly improved clinical outcomes for most 
patients [21, 22]. Additionally, clinical drugs originally used 
for haematological malignancies are also being expanded to 
the treatment of liver cancer [23]. For instance, arsenic tri-
oxide is the first-line therapy for acute promyelocytic leukae-
mia and is approved for advanced primary liver cancer [24]. 
Mitoxantrone, which was originally used to treat leukaemia, 
lymphoma, and other hematologic cancers, has expanded its 
indications to include solid tumours such as liver cancer and 
bladder carcinoma [25]. However, these drugs have notable 
limitations. For example, arsenic trioxide may elevate trans-
aminase levels during liver cancer treatment, necessitating 
the concurrent use of liver-protective agents and close mon-
itoring of liver function. Such side effects, combined with the 
potential emergence of drug resistance, restrict their clinical 
application [26]. There is an urgent need for novel drugs or op-
timised combination therapies to overcome these limitations 
and expand treatment accessibility. In this context, single-
cell sequencing technology holds promise for expediting the 
development and optimised combination of drugs for HCC, 
addressing drug screening challenges by identifying effective 
drug combinations and understanding the mechanisms of 
drug resistance at single-cell resolution.

We have developed a high-throughput and highly sensitive 
single-nucleus RNA sequencing method called snHH-seq [27]. 
This approach integrates random primers and a pre-indexing 
strategy on a droplet microfluidic platform, enabling total 
RNA detection in single nuclei from clinically frozen samples. 
Species-mixing experiments demonstrated that snHH-seq pro-
duces high-fidelity single-cell libraries with a doublet rate no 
higher than 0.8%. Unlike poly(A)-based 10X Chromium, snHH-
seq achieves uniform coverage across gene bodies and allows 
tracing of mutations at single-cell resolution in clinical speci-
mens. When applied to tumour samples, snHH-seq effectively 
depletes cytoplasmic rRNA without additional removal steps 
and efficiently captures nascent RNA with intron retention. 
Compared to Microwell-seq, snHH-seq detects a higher pro-
portion of protein-coding transcripts, transcription factors, ln-
cRNAs, non-polyadenylated genes, and sncRNAs, while nuclear 
isolation yields lower cellular stress signals and longer transcript 
capture.

In this study, we utilized snHH-seq, a high-throughput and 
high-sensitivity single-cell sequencing platform, to systemati-
cally screen clinical compounds for their anti-HCC activity. We 
uncovered a novel combination therapy regimen—HHT and 
YM155 (designated HY)—that synergistically exerted the most 
potent inhibitory effect on cellular proliferation. The potent 
anti-tumor efficacy of HY was validated through comprehen-
sive in  vitro and in  vivo functional experiments. Importantly, 
single-cell resolution analysis revealed the heterogeneous 
transcriptional response to HY treatment across HCC cellu-
lar subpopulations and elucidated its underlying molecular 
mechanisms. Together, this study not only establishes HY as a 
promising novel combination therapy regimen for HCC but also 
provides mechanistic insights at the single-cell level, advancing 
our understanding of precision oncology approaches for liver 
cancer treatment.

2   |   Materials and Methods

2.1   |   Cell Culture and Reagents

Human hepatocellular carcinoma HepG2 cells were sourced 
from the Zhijiang Laboratory (Hangzhou, China) without 
mycoplasma contamination. The HepG2 cells were cultured 
in DMEM with 10% FBS and 1% Penicillin and Streptomycin 
solution. Cells were incubated in a humidified atmosphere 
incubator of 5% CO2 at 37°C. Cladribine (T2558), homohar-
ringtonine (T3380), azacitidine (T1339), cytarabine (T1272), 
venetoclax (T2119), sepantronium bromide (T2111), selinexor 
(T6106), ruxolitinib (T1829), panobinostat (T2383), idarubicin 
hydrochloride (T6010), daunorubicin (T1511L), ferrostatin-1 
(T6500), necrostatin-1 (T1847), Z-VAD(OH)-FMK (T7020), 
and T-5224 (T5416) were purchased from TargetMol (Boston, 
United States).

2.2   |   Cell Growth Inhibition Assay

Cells (5 × 103 cells/well) were seeded in 96-well plates, cul-
tured overnight to allow cell attachment, and treated with 
different drug compounds. After 48 h of treatment, 10 μL of 
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CCK-8 dye was added into each well to a final concentration 
(v/v) of 10% and incubated for another 2 h. Subsequently, the 
absorbance (OD) was measured at 450 nm by the SPARK mi-
croplate reader of the multi-wavelength measurement sys-
tem (TECAN, Switzerland). Cell growth inhibition rate was 
evaluated as the ratio of the absorbance of the treated sam-
ples to that of the negative control samples and analyzed by 
GraphPad Prism 8.0.2 software. All experiments were carried 
out in triplicate.

Dose–response curves and IC50 calculations were also per-
formed using GraphPad Prism 8.0.2 software. The method-
ology involved the following steps: Cell viability values at 
multiple specific concentrations were input into the software. 
The X-axis was converted to a logarithmic scale. By selecting 
Analyse > Nonlinear Regression (curve fit) from the toolbar, 
the [Inhibitor] versus normalized response under the Model 
of Dose–Response-Inhibition category was applied for data 
analysis.

2.3   |   Colony Forming Assay

Cells were seeded in 6-well plates at 1 × 105 cells/well and in-
cubated overnight. The cells were next treated with different 
drug compounds. The culture medium was changed every 
3–4 days until there were colonies visible to the naked eye 
(about 14 days). After that, the culture solution was discarded, 
4% paraformaldehyde was added to the wells and the cells 
were fixed for 10 min. After fixation, the cells were washed 
with distilled water and stained with crystal violet staining 
solution for 10 min. After staining, the staining solution was 
removed through repeated washing. Photos were taken and 
the formation of cell clones in each group was compared by 
using Image J.

2.4   |   Apoptosis Assay

Cells were seeded in a 96-well clear bottom black plate at a 
density of 5 × 103 cells/well and cultured overnight. Following 
attachment, cells were treated with different drug compounds. 
The control group was treated with complete medium only. 
Each treatment group had three replicates. After treatment for 
48 h, 1 μL Hoechst 33342, 5 μL PI, and 5 μL FITC-Annexin V 
were added to each well. Apoptosis in each group was evaluated 
and analyzed by Operetta CLS High Content Screening reader 
(PerkinElmer, United Kingdom). The Excitation/Emission 
wavelengths for Hoechst 33342, FITC-Annexin V, and PI were 
350/461 nm, 494/518 nm, and 535/617 nm, respectively.

2.5   |   FCM Analysis

Cells were seeded in a 6-well plate at a density of 1 × 105 cells/
well and cultured overnight. Following attachment, cells were 
treated with different drug compounds. The control group was 
treated with complete medium only. After treatment for 48 h, 
cells were stained in PBS supplemented with 2% fetal bovine 
serum (FBS) at 4°C for 30 min with Annexin V-FITC and PI. 
Stained cells were washed once with PBS supplemented with 2% 

FBS and analyzed using the BD LSR Fortessa (New York, United 
States). The proportion of positive/negative cells with the same 
mean fluorescence intensity was represented.

2.6   |   Real-Time Cell Proliferation Analysis

HepG2 cells were seeded in accompanying 96-well plates at a 
density of 2 × 103 cells/well, cultured overnight to allow cell at-
tachment, and treated with different drug compounds. The value 
of the cell proliferation signal was detected by the Intelligent 
Cell Real-time Monitoring System (Shanghai, China) according 
to the User Operation Manual.

2.7   |   Single-Cell Screening

HepG 2 cells were seeded in a 6-well plate at a density of 1 × 105 
cells/well and cultured overnight. Following attachment, cells 
were treated with different drug compounds. The control group 
was treated with complete medium only. After treatment for 
48 h, cells were collected and snHH-seq was performed for 
single-cell screening [27]. The general experimental workflow 
for snHH-seq is as follows: Isolate cell nuclei, perform counting, 
and suspend them in a reverse transcription mixture (RT mix). 
For a 96-well plate reaction, 110× RT mix was prepared: 55 μL 
10 mm dNTP, 484 μL RT buffer, 55 μL RNA Inhibitor (Vazyme), 
55 μL Reverse Transcriptase, 341 μL Wash Buffer. The reverse 
transcription kit was included in the VITAPilote-EFT1200 kit 
(Cat # R20122124) ordered from M20 Genomics. Both nuclei-RT 
mix (≤ 50,000 nuclei, 9 μL per well) and 10 μm well-specific bar-
coded RT primers (1 μL per well) were distributed to each well of 
the 96-well plate and stirred gently with the pipette tip. The re-
action mix was incubated with the thermal cycling: (8°C for 12 s, 
15°C for 45 s, 20°C for 45 s, 30°C for 30 s, 42°C for 2 min) × 10 cy-
cles, 42°C for 45 min. After the reaction, all nuclei were col-
lected, mixed, and washed using PBST (PBS, 0.05% Tween 20) 
three times to remove the residual primers. After washing, nu-
clei were suspended in TdT mixture (100,000–1,000,000 nuclei 
per reaction, 39 μL nuclei in PBST, 5 μL 10 × TdT buffer (NEB), 
5 μL CoCl2 (NEB), 0.5 μL 100 mm dATP (Invitrogen), 0.5 μL TdT 
enzyme (NEB)). The TdT reaction mix was incubated at 37°C 
for 30 min. After the reaction, nuclei were washed using PBST 
three times. The nuclei were counted and diluted to 2000–8000 
nuclei h−1 using OptiPrep (Stem Cell). DNA extension reaction 
mixture was prepared (for 80 μL): 40 μL ddH2O, 16 μL thermo-
pol buffer, 6 μL 10 mm dNTP, 6 μL BST 2.0 Warmstart (NEB), 
6 μL RnaseH (NEB), 6 μL USER (NEB). Nuclei, 2 × DNA exten-
sion reaction mixture (M20 Genomics, VITAPilote-EFT1200 
kit), and barcoded beads were encapsulated into droplets using 
the microfluidic platform. All the required reagents for the drop-
let reaction can be ordered from M20 Genomics company. The 
flow rates: 200 μL h−1 for nuclei/reaction mixture; 500 μL h − 1 
for oil; 50 μL h − 1 for beads. The mean value of droplet volume 
is 0.48 nL. The droplets (20–50 μL per tube) were incubated at 
37°C for 1 h, 50°C for 30 min, 60°C for 30 min, 75°C for 20 min. 
Then the droplets were broken by mixing with equal amounts 
of 20% PFO (1H,1H,2H,2HPerfluoro-1-octanol, Sigma). The 
supernatant was collected after centrifuging and purified with 
1.2 × DNA Clean Beads (Vazyme) and eluted in 40 μL ddH2O. 
Two rounds of PCR were performed to amplify cDNA and add 
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sequence adapters. The amplified libraries were purified with 
0.8 × DNA Clean Beads and quantified using Qubit (Invitrogen). 
Circularization was performed to obtain a sequencing nanob-
all library for MGI DNBSEQ using VAHTS Circularization Kit 
for MGI (Vazyme, NM201). Library sequencing was performed 
using DNBSEQ-T7 with paired-end reads of 100 or 150 bp.

2.8   |   Single-Cell Data Preprocessing

For sequencing library, the poly-A tail was trimmed from each 
raw sequencing read using Cutadapt. Subsequently, real cells 
were identified based on the number of reads per cell, utilising a 
manually defined minimal read cutoff determined by the results 
of the UMI-tools whitelist function. Reads were then aligned to 
the GRCh38 reference genome using the STAR 2-pass mode, 
and only uniquely mapped reads were retained. Each read was 
assigned to its corresponding gene using the “gene” tag within 
the GRCh38 GTF by employing feature Count. The digital gene 
expression (DGE) was generated using the UMI tools count 
function. Low-quality cells were filtered out using thresholds 
for UMIs (200 < nCount_UMI < 2500) and mitochondrial gene 
count (percent mt < 50%). Genes detected in fewer than 0.25% 
of the cells were removed. Following this quality control and 
data preprocessing, 46,901 high-quality cells were collected for 
analysis, with an average UMI count of 681 and an average gene 
count of 332.

2.9   |   Clustering of Single-Cell Data Matrix

Seurat [28] was used to perform clustering analysis of single-cell 
data. DGE data were used as inputs. Cells from the pre-processed 
data and genes expressed in more than three cells were selected 
for further analysis. Filtered data were ln(CPM/100 + 1) trans-
formed, and the number of UMI and the percentage of mitochon-
drial gene content were regressed out. The resulting clustering 
results were visualised using Uniform Manifold Approximation 
and Projection (UMAP). The default Wilcoxon rank-sum test 
was used by running the FindAllMarkers function in Seurat to 
find differentially expressed markers in each cluster. The heat 
map produced by the DoHeatmap function is one basis for judg-
ing the quality of clustering. The dot plot map produced by the 
DotPlot function is performed to show the specific gene expres-
sion in each subpopulation with different drug treatment.

2.10   |   Regulon Activity Analysis

To determine the ‘on/off’ activity of each regulon in each cell 
type, we used area under curve (AUC) scores for each regulon 
as a threshold to binarize the regulon activity scores by SCENIC 
[29]. The protocol consists of three stages: (1) coexpression 
modules are inferred using a regression per-target approach 
(GRNBoost2); (2) the indirect targets are pruned from these 
modules using cis-regulatory motif discovery (cisTarget); (3) 
the activity of these regulons is quantified via an enrichment 
score for the regulon's target genes (AUCell). The regulon ac-
tivity t-SNE maps were created using the function tsneAUC in 
the R package SCENIC with the binary regulon activity ma-
trix. To connect regulons with cell types, we used the Wilcoxon 

rank-sum test to identify cell-type-specific regulons with AUC 
score matrices.

2.11   |   TF Regulatory Network Inference

An analytical strategy [30] has been developed for inferring TF 
regulatory networks in single-cell RNA-seq, and we applied this 
method to our snHH-seq dataset. The goal of this analysis is to 
identify potential regulatory links between TFs and their target 
genes based on patterns observed in a single-cell dataset. This 
analysis can be broken down into five key steps: (1) compute de-
noised metacell expression profiles from the single-cell dataset; 
(2) scan gene promoters for the presence of TF motifs; (3) model 
gene expression as a function of TF expression; (4) assemble TF 
regulons and regulatory networks; (5) downstream analysis of 
TF regulatory networks. Open-source implementation of this 
TF regulatory network inference algorithm could be obtained 
from hdWGCNA R package [31].

2.12   |   Statistical Analysis

In Figure 1B,C, the statistical significance of hepatocellular car-
cinoma cell viability following treatment with drug concentra-
tions of 12.5, 25, 50, and 100 nM was evaluated using an unpaired 
two-tailed Student's t-test. In Figure  1E, following treatment 
of HepG2 cells with HHT, YM155, Pano, IDA, and DNR, the 
two-tailed Student's t-test was applied to assess differences in 
cell number, FITC-Annexin V fluorescence intensity, and PI 
fluorescence intensity. Data are presented as mean ± SD (n = 3). 
Significance levels are indicated as follows: *p < 0.05, **p < 0.01, 
***p < 0.001. In Figure 3A,B, statistical significance for both cell 
number and growth inhibition was assessed by the two-tailed 
Student's t-test. Specific comparisons are indicated as follows: 
*p < 0.05, **p < 0.01 versus the negative control group; #p < 0.05, 
##p < 0.01 versus the HHT alone group; $p < 0.05, $$p < 0.01 
versus the YM155 alone group; %p < 0.05, %%p < 0.01 versus the 
Pano alone group; &p < 0.05, &&p < 0.01 versus the IDA alone 
group. In Figure  3E, the statistical significance of clone num-
ber was determined by the two-tailed Student's t-test (*p < 0.05, 
**p < 0.01, ***p < 0.001). In Figure 3L, the statistical significance 
of cell viability was also determined by the two-tailed Student's 
t-test (*p < 0.05).

3   |   Results

3.1   |   Drug Screening Identified Compounds That 
Effectively Inhibit HCC Cell Proliferation

The efficacy of drugs used clinically for malignant haemato-
logical diseases in treating solid tumours remains an area wor-
thy of further exploration. In this study, we integrated classical 
high-content screening platforms with scRNA-seq technologies 
to identify drug combinations that effectively inhibit the prolif-
eration of HCC cells (Figure 1A). We first conducted an in vitro 
inhibition assay on HCC cells using targeted agents that have 
been clinically applied for the treatment of leukaemia (Table S1). 
Systematic analysis of clinical compounds acting on HCC cells 
revealed significant cytostatic effects by CdA, HHT, YM155, 
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FIGURE 1    |     Legend on next page.
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SXR, Pano, IDA and DNR, while AZA, AraC, VEN and Rux 
showed no significant changes in inhibiting HCC cell viability 
(Figure 1B). The IC50 value serves as a measure of a drug's abil-
ity to induce apoptosis—the stronger the induction capability, 
the lower the numerical value. Then, we adjusted the concen-
tration gradients for subsequent cell proliferation assays. The 
results indicated that HHT, YM155, Pano, IDA, and DNR ex-
hibited potent anti-cancer activity at lower concentrations, with 
IC50 values of 57.2, 103.0, 58.57, 118.2, and 163.1 nM, respectively 
(Figure 1C and Figure S1A). AZA, AraC, VEN, and Rux contin-
ued to show no significant changes in inhibiting HCC cell viabil-
ity even at higher concentrations (Figure S1B).

To further investigate the inhibitory effects, a high-content cell 
imaging system was employed to analyse HCC cells treated with 
HHT, YM155, Pano, IDA, and DNR. The results revealed a sig-
nificant reduction in HCC cell viability, alongside a substantial 
increase in both early and late apoptotic indices. Specifically, 
IDA demonstrated the most profound effect on cell proliferation 
and early apoptosis, reducing cell counts by 4.18-fold compared 
to the control and increasing the early apoptotic index by 14.40-
fold. HHT exerted the greatest impact on late apoptosis, which 
increased by 22.37-fold relative to the control (Figure  1D,E). 
Following treatment with HHT, YM155, Pano, IDA, and DNR, 
both the size and number of HCC cell colonies were markedly 
diminished. Notably, DNR exhibited the most pronounced in-
hibitory effect on clonogenic survival, nearly abrogating visible 
colony formation and reducing colony numbers by 14.96-fold 
compared to the control (Figure S1C,D). Together, classical drug 
screening identified clinical agents capable of effectively inhib-
iting the clonogenicity and proliferative potential of HCC cells 
in vitro.

3.2   |   Single-Cell Screening Uncovered the  
Heterogeneous Transcriptional Response 
Characteristics

Based on preliminary screening and functional experimental 
validation, HHT, YM155, Pano, IDA, and DNR were identified 
with significant inhibitory effects on the proliferation of HCC 
cells. Since both IDA and DNR are anthracycline drugs with 
similar mechanisms of action and metabolic pathways, and 
IDA exhibited slightly stronger inhibitory efficiency than DNR, 
only IDA was selected for subsequent drug combination screen-
ing. Utilizing the previously developed high-throughput and 

high-sensitive single-cell sequencing platform snHH-seq [27], a 
single experiment simultaneously analyzed the single-cell tran-
scriptomes of HCC cells treated with the following conditions: 
untreated control, HHT, YM155, Pano, IDA, HHT&YM155(HY), 
HHT&Pano(HP), HHT&IDA(HI), YM155&Pano(YP), 
YM155&IDA(YI), and Pano&IDA(PI) (Figure  2A). Following 
quality control and data preprocessing, a total of 46,901 cells 
were collected, with an average UMI count of 681.1 and an av-
erage gene count of 331.58 (Figure S2A,B, and Table S2). A key 
quality control measure was to set the mitochondrial proportion 
threshold of < 50% (Figure S2C). Recent evidence suggests that 
malignant tumor cells have elevated baseline mitochondrial 
gene expression, and high mitochondrial content often marks 
viable, functionally distinct subpopulations rather than low-
quality cells [32]. Consistent with this, our drug treatments on 
HCC cells induced cell death that was accompanied by a further 
increase in mitochondrial proportion.

Subsequently, unsupervised clustering analysis of these cells 
after dimensionality reduction identified four subpopulations 
(Figure 2B). Among them, cluster 1 (C1), defined as proliferation-
related cells (PC), was characterised by marker genes such as 
GPC6, XIST, AMOT, SLIT2, and RPS2. Cluster 2 (C2), defined 
as apoptosis-related cells (AC), expressed genes such as PDE3A, 
MIR100HG, FTH1, and SLC7A5. Cluster 0 (C0) and cluster 3 (C3) 
lacked distinctive marker genes. Further hdWGCNA [30] co-
expression analysis of the single-cell data revealed that the data 
could be divided into two modules: M1 and M2, corresponding 
to PC and AC, respectively. C0 did not belong to either module 
and was closer to C1, thus being defined as primary prolifera-
tive cells (PPC). C3, which exhibited low expression of both M1 
and M2, was defined as intermediate cells (IC) (Figure  2C,D, 
and Figure S2D,E). Next, we analysed the changes in cell type 
proportions and cell cycle distribution across various treatment 
groups of HCC cells. Results revealed that drug treatments did 
not affect the cell types or cell cycle phases but significantly 
influenced the cell type proportions. Compared to the control 
and other treatment groups, the HY combination exhibited the 
most pronounced inhibitory effect. Specifically, the proportion 
of PC in HCC cells drastically decreased from 46.15% to 5.29%, 
while the proportion of AC increased from 23.42% to 37.04% 
(Figure 2E and Figure S2F).

Additionally, we conducted an analysis of transcriptional het-
erogeneity in HCC cells treated with individual drugs and drug 
combinations (Figure 2F). Results demonstrated that treatment 

FIGURE 1    |    Drug screening identified compounds that effectively inhibit HCC cell proliferation. (A) Design framework diagram of this study, 
which includes four parts: Primary screening, single-cell screening, functional validation, and mechanism research. (B) Cell viability percentage 
(%) of different concentrations of drug against HepG2 cell line. Cells were seeded in a 96-well plate and treated with 0.25, 0.5, 1, and 2 μM drug for 
48 h, and the cell viability percentage was detected with CCK-8 kit. (C) Cell viability percentage (%) of HHT, YM155, Pano, IDA, and DNR against 
HepG2 cell line. Cells were seeded in a 96-well plate and treated with 12.5 nM, 25 nM, 50 nM, and 100 nM drug for 48 h, and the cell viability per-
centage was detected with CCK-8 kit. The dose–response curves were performed using GraphPad Prism 8.0.2 software. The half-maximal inhib-
itory concentration (IC50) refers to the concentration of a drug that induces 50% apoptosis in cells. (D) Representative images of cell apoptosis in 
various groups. Different drugs were treated on HepG2 cells for 48 h, and then apoptosis was detected by Hoechst 33342/FITC-Annexin V/PI triple 
staining. The images were collected by an Operetta CLS HCS reader. Merged images were the composition of images of the same field from different 
channels. (E) Cell number, fluorescence intensity of FITC-Annexin V and PI in HepG2 cells treated by HHT, YM155, Pano, IDA, and DNR. Data 
are presented as mean ± SD from three independent experiments (n = 3). Statistical comparisons are performed using unpaired two-tailed Student's 
t-test. Significance levels are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001. The absence of an asterisk (*) indicates no significant difference.

 13652184, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cpr.70148, W

iley O
nline L

ibrary on [09/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7 of 15Cell Proliferation, 2025

FIGURE 2    |     Legend on next page.
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with HHT and combination regimens HY, HI, and HP signifi-
cantly suppressed the expression of CREB5 and SLIT2 in HCC 
cells (module K), aligning with existing studies identifying these 
genes as potential therapeutic targets in oncology [33, 34]. HHT 
specifically induced upregulation of genes including YWHAE, 
PKM, FTH1, SLC7A5, PLEC, and CPS1 (module D), whereas such 
effects were not observed in the HY, HI, or HP combination. 
AMOT exhibits dual roles in tumorigenesis, either promoting 
or inhibiting tumour growth via modulation of signalling path-
ways such as Hippo and Wnt/β-catenin [35]. Single-cell data re-
vealed that IDA markedly increased AMOT expression, whereas 
HY and HP combinations reduced its expression (module F), 
indicating that while these agents phenotypically suppress HCC 
growth, their underlying mechanisms exhibit distinct pathway 
divergences. Moreover, POLR2A is the largest subunit of RNA 
polymerase II, responsible for transcribing all protein-coding 
genes. Dysfunction or dysregulated expression of POLR2A may 
disrupt transcriptional regulation in cancer cells. Liu et al. have 
found that in colorectal cancer, loss of POLR2A could lead to 
transcriptional dysregulation, thereby promoting tumour pro-
gression [36]. In our study, HY treatment was observed to upreg-
ulate POLR2A expression (module A), though the mechanisms 
require further exploration. In summary, single-cell sequencing 
technology identified the transcriptional heterogeneity of HCC 
cells in response to drug treatments and screened out the drug 
combination HY with the most potent inhibitory efficiency.

3.3   |   Functional Experiments Validated the  
Inhibitory Efficiency of Drug Combination

To validate the drug combinations' inhibitory efficiency iden-
tified through single-cell sequencing, we further conducted 
functional experiments. High-content statistical analysis and 
cell viability assays confirmed that the pairwise combina-
tions of HHT, YM155, Pano, and IDA exhibited significantly 
greater efficacy than individual drugs (Figure  3A,B). Notably, 
the combination of HY exhibited the best performance, with a 
growth inhibition rate 1.8 times higher than HHT alone and 1.7 
times higher than YM155 alone, indicating a strong synergis-
tic inhibitory effect (Figure  3B). Flow cytometry analysis also 
confirmed that the drug combinations were significantly more 
effective than individual drugs. In early and late apoptosis, the 
HY showed the strongest inhibitory effects. Specifically, in early 
apoptosis, the apoptotic ratio of the HY was 1.58 times higher 
than HHT and 1.38 times higher than YM155. In late apopto-
sis, the proportions were 3.12% for HHT, 3.44% for YM155, 

and 4.6% for the HY, demonstrating significant synergistic in-
hibition (Figure 3C). In the colony formation assay, the HY re-
mained the most effective, reducing colony formation by 7.88 
times compared to HHT and by 6.15 times compared to YM155 
(Figure 3D,E). These in vitro experimental results demonstrate 
that the drug combinations exhibit significantly greater cytotox-
icity and anti-proliferative activity against HCC cells compared 
to individual drugs. Notably, the HY performed optimally. This 
finding was corroborated by real-time cell analysis (RTCA) 
impedance-based assays, where the proliferation signals were 
most markedly reduced in the HY combination compared to 
HHT or YM155 alone (Figure 3F).

To further investigate the anti-tumour efficacy of the HY, we 
conducted in vivo xenograft studies. Results showed a signifi-
cant reduction in tumour burden, including tumour volume and 
tumour weight, following treatment with the HY compound 
combination. A statistically significant difference in tumour 
volume was observed after 14 days, while no significant changes 
were noted in body weight among the mice (Figure  3G–J). 
Haematoxylin and eosin staining revealed well-preserved nu-
clear structure, deep staining, and uniform cell distribution 
with rare necrotic areas in the control group. In contrast, the 
HY-treated HCC cells exhibited enlarged and deformed nu-
clei, indistinct cellular boundaries, and an expanded necrotic 
region within the tumour tissue (Figure  3K). Consistent with 
the in vitro findings, the in vivo studies further demonstrated 
that the HY drug combination effectively inhibited HCC tumour 
growth.

In our single-cell sequencing analysis of gene expression in 
response to drug treatments, we found that the effects of com-
pounds in HCC changed the expression level of Ferritin Heavy 
Chain 1 (FTH1), suggesting the action of the drug may be related 
to ferroptosis (Figure 2F). To validate this, we co-treated HCC 
cultures with HHT or YM155 and inhibitors targeting distinct 
cell death pathways: Fer-1 (ferroptosis inhibitor), Nec-1 (necro-
ptosis inhibitor), and Z-VAD-FMK (apoptosis inhibitor). The re-
sults of cell viability assays showed that treatment with Fer-1 
(100 nM) significantly rescued HCC cells from death induced 
by HHT (16.18%) or YM155 (6.19%) (Figure 3L and Figure S3A). 
Similarly, real-time cell analysis (RTCA) impedance-based 
proliferation assays demonstrated that proliferation rates were 
significantly restored in Fer-1 co-treated groups (Figure  3M 
and Figure S3B). Interestingly, in HHT or YM155-treated HCC 
cells, Fer-1 had the greatest inhibitory effect on early and late 
apoptosis, whereas Z-VAD-FMK had the least inhibitory effect 

FIGURE 2    |    Single-cell screening uncovered the heterogeneous transcriptional response characteristics. (A) Schematic of the basic workflow for 
snHH-seq. (B) Uniform manifold approximation and projection (UMAP) embedding of the HCC cells analyzed in this study. Colour-coded for differ-
ent drug treatment (left) and cell type (right). (C) Dot plot showing representative module expression in each cluster of HCC cells. Average expression 
represents the average expression level of a specific gene within a defined cell population. Percent expressed refers to the proportion of cells within 
the given population that show detectable expression of the gene. (D) Heatmap showing representative gene expression in each cluster of HCC cells. 
(E) Bar chart showing the percentage of cell number in HCC cells with different drug treatment. (F) Dot plot showing representative gene expression 
in HCC cells with different drug treatment. Modules A-K are defined based on the overall expression patterns of these 20 marker genes. Each module 
is composed of co-expression patterns involving one or multiple genes. Average expression represents the average expression level of a specific gene 
within a defined cell population. Percent expressed refers to the proportion of cells within the given population that show detectable expression of the 
gene. H, HHT; Y, YM155; P, Pano; I, IDA; HY, HHT&YM155; HP, HHT&Pano; HI, HHT&IDA; YP, YM155&Pano; YI, YM155&IDA; PI, Pano&IDA; 
PPC, primary proliferative cells; PC, proliferation-related cells; AC, apoptosis-related cells; IC, intermediate cells.

 13652184, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cpr.70148, W

iley O
nline L

ibrary on [09/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



9 of 15Cell Proliferation, 2025

FIGURE 3    |     Legend on next page.
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(Figure 3N and Figure S3C). Collectively, these results suggest 
that HHT and YM155 may trigger ancillary apoptotic signal-
ling; their primary anti-proliferative effect in HCC is mediated 
through ferroptosis, as evidenced by the selective rescue with 
Fer-1. This underscores ferroptosis induction as a key mecha-
nism of action for these compounds.

3.4   |   Molecular Mechanisms Elucidation at 
the Single-Cell Level

Through comprehensive in vitro and in vivo functional valida-
tion, we confirmed that the HY drug combination effectively 
inhibits the proliferation of HCC cells. To elucidate its mech-
anisms basis at single-cell resolution, we performed UMAP 
clustering and co-expression analysis on single-cell data from 
control and HY-treated samples, revealing three transcription-
ally distinct subclusters: PC, AC, and PPC. These subclusters 
aligned with two co-expression modules: M1 (enriched in PC), 
and M2 (enriched in AC), while PPC lacked module association 
(Figure  4A,B and Figure  S4C). Additionally, differential gene 
expression analysis across subclusters demonstrated that HY 
treatment universally upregulated apoptosis-related genes (e.g., 
MT-ND2, MT-ATP6) and downregulated proliferation-related 
genes (e.g., XIST, RPS2). Interestingly, HY induced opposing 
expression trends in mitochondrial ribosomal genes: MT-RNR1 
(a core component of the mitochondrial small subunit) was sup-
pressed, while MT-RNR2 (a structural component of the large 
subunit) was elevated, and the specific mechanism requires 
further exploration. HY treatment also selectively inhibited the 
expression of lncRNA NEAT1 in the AC and PPC populations, 
but not in the PC population. This is consistent with existing 
research that NEAT1 regulates miR-362-3p and MIOX in the fer-
roptosis signalling pathway in liver tumours [37] (Figure  4C), 
further supporting ferroptosis as a key HY-driven mechanism. 
Moreover, by characterising signature genes associated with 
ferroptosis-related lipid metabolism pathways and iron homeo-
stasis, we found that HY treatment of HCC cells downregulates 

the expression of genes such as glutathione peroxidase 4 (GPX4) 
[38], dihydroorotate dehydrogenase (DHODH) [39], and trans-
ferrin receptor (TFRC) [40], while upregulating ACSL4, a criti-
cal inducer of ferroptosis [41] (Figure S4A). This dysregulation 
exhibited distinct, cell-type-specific patterns (Figure S4B). The 
suppression of GPX4 was a consistent response observed across 
all three cell types (AC, PPC, PC). TFRC was most significantly 
downregulated in AC, while SNX5, USP7, and SLC3A2 showed 
greater downregulation in PC. ACSL4 upregulation was specific 
to PPC and PC. Although HY treatment modulates the expres-
sion of key ferroptosis-related genes in a cell-type-specific man-
ner, the overall pathway enrichment shift for the core ferroptosis 
pathway was subtle. Together, these single-cell insights reveal 
that HY coordinately triggers apoptosis, inhibits proliferation, 
and dysregulates mitochondrial and ferroptosis-associated net-
works, with subpopulation-specific effects shaping its therapeu-
tic efficacy.

To delineate the transcriptional mechanism underlying HY-
treated effects, we constructed a gene regulatory network (GRN) 
from single-cell data of HY-treated HCC cells using SCENIC 
[29]. The transcription factor (TF) regulon activity heatmap 
displayed the activity distribution and clustering patterns of 
each regulon (Figure 4D, Figure S4D and Table S3). Different 
TF regulons showed distinct regulatory patterns: HOXD10 ex-
clusively regulated the PC cluster; BRCA1, CREB3L2, JUN, and 
MEIS1 co-regulated both PC and PPC clusters; CREB5, FOXP1, 
HDAC2, and RARB primarily governed PC/PPC clusters with 
minimal regulation of the AC cluster; KLF5, ATF1, TEAD1, 
and TFAP2A mainly targeted the AC cluster while retaining 
influence on PC/PPC clusters; whereas NFATC3, GTF2IRD1, 
RXRA, THRB, and ARID5B specifically regulated the AC 
cluster (Figure  4E and Figure  S4E). Within this network, we 
observed key ferroptosis-related TFs with cell-type-specific ac-
tivity. These included TFAP2A [42], and KLF5 [43] in AC, TCF4 
[44] and ATF4 [45] in PPC, E2F1 [46] in PC, as well as BRCA1 
[47] in both PPC and PC. Notably, BRCA1 and E2F1 are known 
to play a context-dependent dual role in ferroptosis regulation. 

FIGURE 3    |    Functional experiments validated the inhibitory efficiency of drug combination. (A) Cell number of different combinations of drugs 
against HepG2 cell line. Cells were seeded in a 96-well plate for 48 h, and the cell number was detected by an Operetta CLS HCS reader. (B) Cell 
growth inhibition percentage (%) of different combinations of drugs against HepG2 cell line. Cells were seeded in a 96-well plate for 48 h, and the 
cell growth inhibition percentage (%) was detected with CCK-8 kit. (C) Early apoptosis percentage (top) and late apoptosis percentage (bottom) 
of different combinations of drugs against HepG2 cell line. Cells were seeded with different drug combinations in a 6-well plate for 48 h, and the 
Annexin V-FITC and PI expression was detected by LSR Fortessa flow cytometry. (D) Colony formation assay was conducted to investigate tumour 
growth after treatment with different drug combinations for 14 days. The colonies were visualised with the images. (E) The corresponding histogram 
showed the colony numbers. (F) Real-time signal analysis of cell proliferation after treatment with HHT, YM155, and HHT&YM155. (G) Images of 
tumours from control and HY-treated mice groups. (H) Statistical analysis of tumour volumes of mice in the control and HY treatment groups along 
with time. (I) Statistical analysis of tumour weight of mice in the control and HY treatment groups. (J) Statistical analysis of body weight of mice in 
the control and HY treatment groups along with time. (K) Representative images of the HE staining in tumour sections, scale bar: 50 μM. (L) Cell 
viability percentage (%) of HHT, HHT&Fer-1, HHT&Nec-1, and HHT&Z-VAD-FMK against HepG2 cell line. Cells were seeded in a 96-well plate 
for 48 h, and the cell viability percentage was detected with CCK-8 kit. (M) Real-time signal analysis of cell proliferation after treatment with HHT, 
HHT&Fer-1, HHT&Nec-1, and HHT&Z-VAD-FMK. (N) Early apoptosis percentage (left) and late apoptosis percentage (right) of HHT, HHT&Fer-1, 
HHT&Nec-1, and HHT&Z-VAD-FMK against HepG2 cell line. Cells were seeded with different drug combinations in a 6-well plate for 48 h, and 
the Annexin V-FITC and PI expression was detected by LSR Fortessa flow cytometry. H, HHT; Y, YM155; P, Pano; I, IDA; HY, HHT&YM155; HP, 
HHT&Pano; HI, HHT&IDA; YP, YM155&Pano; YI, YM155&IDA; PI, Pano&IDA. Data were presented as mean ± SD (n = 3) and comparisons were 
performed with unpaired two-tailed Student's t-test. *p < 0.05, **p < 0.01, ***p < 0.001 versus negative control group; #p < 0.05, ##p < 0.01 versus HHT 
alone group; $p < 0.05, $$p < 0.01 versus YM155 alone group; %p < 0.05, %%p < 0.01 versus Pano alone group; &p < 0.05, &&p < 0.01 versus IDA alone 
group, ns, no significance.
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FIGURE 4    |     Legend on next page.

 13652184, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cpr.70148, W

iley O
nline L

ibrary on [09/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 15 Cell Proliferation, 2025

GO analysis of their target genes (Table  S3) revealed a strong 
association with cell cycle processes: 28 targets of BRCA1 were 
enriched in the “regulation of G2/M transition of mitotic cell 
cycle” (GO:0010389), while 986 targets of E2F1 were enriched 
in “mitotic cell cycle” (GO:0000278). Given that cell cycle arrest 
has a potent suppressive effect on ferroptosis [48], HY-induced 
cell cycle progression may counteract ferroptosis defense 
mechanisms by modulating the activity of these dual-role TFs 
in PC and PPC. That is HY may activate a compensatory, pro-
ferroptotic program in PC and PPC by modulating dual-role TFs 
linked to cell cycle progression.

Further functional annotation of regulon targets highlighted 
bifurcated effects: HOXD10, FOXP1, and FOXP2 regulated 
multiple tumour proliferation-related genes (e.g., SOX9, MEIS1, 
AMOT), while TEAD1 and TFAP2A controlled apoptosis-
associated genes (e.g., PDE3A, KYNU, POU2F3) (Figure  4F). 
Network topology analysis further exhibited dynamic crosstalk 
and differential regulatory intensities between regulons, reflect-
ing the complexity of HY-induced GRN in HCC cells (Figure 4G). 
The regulatory network is divided into two main components. 
On the left, the focus is on the PC cluster, where GO enrichment 
analysis reveals associations with pathways such as ribonucle-
oprotein complex biogenesis and ribosome biogenesis. On the 
right, the analysis centres on the AC subpopulation, with GO 
enrichment highlighting pathways including positive regulation 
of protein localization and wound healing.

Notably, differential regulon analysis identified JUN as the pre-
dominant regulator mediating HY-induced proliferation inhi-
bition, predominantly active in the AC cluster, consistent with 
differential gene expression patterns (Figure S4F). JUN formed 
intricate networks with MYC, POU2F1, RORA, and other reg-
ulators to amplify HCC cell proliferation arrest (Figure  S4G). 
To validate this, we administered the JUN-specific inhibitor 
T-5224 (10 μM) in HCC cells following HY-mediated suppres-
sion of their in vitro proliferation. Cell viability assays demon-
strated that T-5224 effectively rescued cell death induced by HY, 
achieving a rescue rate of 31.99% (Figure S4H). Similarly, flow 
cytometric analysis revealed that T-5224 treatment most effec-
tively counteracted HY-induced early and late apoptosis in HCC 
cells (Figure S4I). These experimental findings corroborate the 
single-cell RNA sequencing data, collectively indicating that 

JUN mediates the inhibitory effect of HY on the proliferation 
of HCC cells. Collectively, our GRN analysis delineated key 
cluster-specific regulons underlying HY's effects on HCC cells, 
providing a foundation for precision diagnosis and treatment in 
clinical hepatology.

4   |   Discussion

In this study, we employed high-throughput single-cell screen-
ing and functional validation assays to demonstrate that the 
novel combination therapy HY (HHT&YM155) effectively in-
hibits HCC cell proliferation, with mechanistic insights eluci-
dated at the single-cell level. While HHT, a ribosome inhibitor, 
is known to induce the rapid turnover of several key oncopro-
teins (e.g., c-MYC, MCL-1) and potently triggers apoptosis in 
leukaemia cells, it exhibits limited efficacy against solid tumour 
cells [49, 50]. Qin et al. [51] demonstrated that activation of the 
JNK-USP36-Snail1 axis drives HHT resistance in solid tumours 
and that combinatorial inhibition of this axis synergizes with 
HHT to inhibit solid tumour proliferation and migration. In our 
data, single-cell transcriptomic analyses and functional experi-
ments consistently confirm that the drug combinations achieve 
significantly greater therapeutic efficacy than either drug alone. 
Notably, our findings reveal that conventional haematologi-
cal malignancies drugs (e.g., AZA, AraC, VEN, Rux) exhibit 
markedly reduced efficacy in HCC cells, which may be due to 
substantial intrinsic molecular distinctions between haemato-
poietic tumours and solid tumours [52].

The snHH-seq platform offers distinct advantages in drug 
screening by: (1) transcending conventional single-phenotype 
assessments through leveraging single-cell resolution to un-
cover molecular mechanisms of drug action; (2) enabling par-
allel analysis across multiple time points and dosage conditions 
via pre-index technology; and (3) establishing correlations be-
tween short-term transcriptional responses and long-term cel-
lular viability. Additionally, this platform employs a random 
primer strategy during reverse transcription to capture total 
transcriptomes at single-cell resolution. This allows for com-
prehensive analysis of transcriptional changes in response to 
drug treatment at a single-cell level. Our snHH-seq analysis 
identified multiple lncRNAs functionally associated with HY 

FIGURE 4    |    Molecular mechanisms elucidation at the single-cell level. (A) UMAP embedding of the HCC cells analysed in this study. Colour-
coded for control and HY treatment (top) and cell type (bottom). (B) Dot plot showing representative module expression in each cluster of HCC cells 
with HY treatment. Average expression represents the average expression level of a specific gene within a defined cell population. Percent expressed 
refers to the proportion of cells within the given population that show detectable expression of the gene. (C) Dot plot showing representative gene 
expression in each cell type with HY treatment. Average expression represents the average expression level of a specific gene within a defined cell 
population. Percent expressed refers to the proportion of cells within the given population that show detectable expression of the gene. (D) Heatmap 
showing the activity distribution of each regulon in HCC cells with HY treatment. (E) Violin plot showing representative regulon in each cluster of 
HCC cells with HY treatment. (F) Bar plot showing the top predicted target genes for each TF, split by whether the target gene was positively (right) 
or negatively (left) correlated with the TF based on gene expression. The regulatory importance score from XGBoost is plotted on the x-axis, and tar-
get genes are ranked by their importance scores. (G) The TF network showing regulatory links originating from our TF of interest in (F). The nodes 
represent TFs and genes, and the edges represent inferred regulatory relationships. The selected TF is shown as a diamond, other TFs are shown as 
triangles, and genes are shown as circles. The size of each node corresponds to the outdegree in the network. The colour of the edges represents the 
strength of the TF-gene interaction based on the Pearson correlation of gene expression. The colour of each node represents the number of links to the 
selected TFs. GO enrichment analysis of differentially expressed genes in PC (left) and AC (right) subpopulation. HY, HHT&YM155; PPC, primary 
proliferative cells; PC, proliferation-related cells; AC, apoptosis-related cells.
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treatment response in HCC. For instance, NEAT1, a well-
characterised oncogenic lncRNA [53], exhibited cluster-specific 
regulation post-HY treatment, with marked upregulation in 
the AC cluster but downregulation in the PC cluster, suggest-
ing its potential involvement in cell death. This aligns with re-
cent findings demonstrating that NEAT1's tumour-suppressive 
function in acute myeloid leukaemia (AML) [54]. MALAT1, 
an abundant, evolutionarily conserved ~7 to 8-kb lncRNA lo-
calised to nuclear speckles and overexpressed in cancers, has 
long been associated with poor prognosis and metastasis across 
malignancies [55]. However, its oncogenic versus tumour-
suppressive roles remain contentious. Our single-cell data 
revealed that HY significantly suppresses MALAT1 expres-
sion, particularly in the AC cluster, supporting its potential 
oncogenic role in HCC progression. Furthermore, additional 
lncRNA candidates including YWHAE, XIST, and LIPE-AS1 
emerged as promising precision targets for HCC therapy. 
These findings, coupled with the emerging understanding of 
the complex roles of lncRNAs in cancer biology, highlight the 
importance of studying lncRNA regulation in drug response 
for developing next-generation anticancer therapies.

The vast amount of data generated by high-throughput single-
cell sequencing demands the power of deep learning to unlock 
its full potential. In future studies, we might leverage artificial 
intelligence to further delve into the data presented in this study, 
identifying more precise commonalities in drug mechanisms 
and cell-type-specific response patterns, thereby providing ro-
bust data support for mechanistic elucidation and predictive 
modeling of therapeutic efficacy.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1: Drug screening identified 
compounds that effectively inhibit HCC cell proliferation. (A) Images of 
HepG2 cell morphology. (B) Cell viability percentage (%) of AZA, AraC, 
VEN, and Rux against HepG2 cell line. Cells were seeded in a 96-well 
plate and treated with 1.25 μM, 2.5 μM, 5 μM, 10 μM drug for 48 h, and 
the cell viability percentage was detected with CCK-8 kit. (C) Colony 
formation assay was conducted to investigate tumour growth after 
treatment with HHT, YM155, Pano, IDA, and DNR for 14 days. The col-
onies were visualised with the images. (D) The corresponding histo-
gram showed the colony numbers. Data were presented as mean ± SD 
(n = 3) and comparisons were performed with unpaired two-tailed 
Student's t test. *p < 0.05. The absence of a * mark indicates no statistical 
significance. Figure S2: Single-cell screening uncovered the heteroge-
neous transcriptional response characteristics. (A) UMAP embedding 
of the HCC cells analysed in this study. Colour-coded for specific drug 
treatment (left) and cell type (right). (B) UMAP embedding of the HCC 
cells analysed in this study. Colour-coded for RT barcode. (C) The violin 
plot of chrMT% distribution. (D) HdWGCNA analysis of HCC cells with 
different drug treatment identified two modules. (E) UMAP embedding 
of the HCC cells analysed in this study. Colour-coded for module 1 (left) 
and module 2 (right). (F) Bar chart showing the percentage of cell cycle 
in HCC cells with different drug treatment. H, HHT; Y, YM155; P, Pano; 
I, IDA; HY, HHT&YM155; HP, HHT&Pano; HI, HHT&IDA; YP, 
YM155&Pano; YI, YM155&IDA; PI, Pano&IDA; PPC, primary prolifer-
ative cells; PC, proliferation-related cells; AC, apoptosis-related cells; 
IC, intermediate cells. Figure S3: Functional experiments validated the 
inhibitory efficiency of drug combination. (A) Cell viability percentage 
(%) of YM155, YM155&Fer-1, YM155&Nec-1, and YM155&Z-VAD-FMK 
against HepG2 cell line. Cells were seeded in 96-well plate for 48 h, and 
the cell viability percentage was detected with CCK-8 kit. (B) Real-time 
signal analysis of cell proliferation after treatment with YM155, 
YM155&Fer-1, YM155&Nec-1, and YM155&Z-VAD-FMK. (C) Early 
apoptosis percentage (top) and late apoptosis percentage (bottom) of 
YM155, YM155&Fer-1, YM155&Nec-1, and YM155&Z-VAD-FMK 
against HepG2 cell line. Cells were seeded with different drug combina-
tion in 6-well plate for 48 h, and the Annexin V-FITC and PI expression 
was detected by LSR Fortessa flow cytometry. Data were presented as 
mean ± SD (n = 3) and comparisons were performed with unpaired two-
tailed Student's t test. *p < 0.05, ns, no significance. Figure S4: 
Molecular mechanisms elucidation at the single-cell level. (A) Dot plot 
showing the expression of signature genes associated with ferroptosis in 
HCC with (HY) or without (Control) HY treatment. Average expression 
represents the average expression level of a specific gene within a de-
fined cell population. Percent expressed refers to the proportion of cells 
within the given population that show detectable expression of the gene. 
(B) Dot plot showing the expression of signature genes associated with 
ferroptosis across different cell types with (HY) or without (C) HY treat-
ment. Average expression represents the average expression level of a 
specific gene within a defined cell population. Percent expressed refers 
to the proportion of cells within the given population that show detect-
able expression of the gene. (C)UMAP embedding of the HCC cells with 
HY treatment. Colour-coded for module 1 (left) and module 2 (right). 
(D) Bar chart showing the number of cells per regulon (left) and the 
number of regulons per cell (right). (E) Dot plot showing the representa-
tive regulon in each cluster of HCC cells with HHT treatment. Regulon 
specificity score (RSS) measures the specificity score of a regulon across 
different cell types. Z score assesses the expression level of an individual 

gene relative to its background distribution, measured in standard devi-
ations. (F) Scatter plot showing the effect sizes from the differential reg-
ulon test for the positive (x-axis) and negative (y-axis) regulons. For the 
TFs in the top left corner, the negatively-correlated target genes are up-
regulated of AC cluster in HY treatment relative to control (left), and the 
negatively-correlated target genes are up-regulated of in HY treatment 
relative to control (right). Each point represents a TF, coloured by the 
module assignment in (C). Diamonds represent TFs that are also signifi-
cantly differentially expressed, while circles are not differentially ex-
pressed. TFs that did not reach significance are opaque while the 
significant TFs have a black outline. The number of significantly differ-
entially expressed regulons in each quadrant of the plot are labelled in 
the corners. (G) The TF network showing regulatory links originating 
from JUN. The nodes represent TFs and genes, and the edges represent 
inferred regulatory relationships. The selected TF is shown as a dia-
mond, other TFs are shown as triangles, and genes are shown as circles. 
The size of each node corresponds to the outdegree in the network. The 
colour of the edges represents the strength of the TF-gene interaction 
based on the pearson correlation of gene expression. The colour of each 
node represents the number of links to the selected TFs. (H) Cell viabil-
ity percentage (%) of HY and HY + T5224 against HepG2 cell line. Cells 
were seeded in a 96-well plate for 48 h, and the cell viability percentage 
was detected with CCK-8 kit. (I) Early apoptosis percentage (upper) and 
late apoptosis percentage (below) of HY and HY + T5224 against HepG2 
cell line. Cells were seeded with different drug combination in 6-well 
plate for 48 h, and the Annexin V-FITC and PI expression was detected 
by LSR Fortessa flow cytometry. HY, HHT&YM155; PPC, primary pro-
liferative cells; PC, proliferation-related cells; AC, apoptosis-related 
cells. Data were presented as mean ± SD (n = 3) and comparisons were 
performed with unpaired two-tailed Student's t-test. *p < 0.05, **p < 0.01, 
***p < 0.001. Table S1: Drug screening identified compounds that effec-
tively inhibit HCC cell proliferation. The information of drugs used in 
this study, including full name, abbreviation, specification, solvent and 
aliquot concentration. Table  S2: Single-cell screening uncovered the 
heterogeneous transcriptional response characteristics. (Sheet 1) The 
RT barcode information corresponding to each drug treatment group. 
(Sheet 2) The cell number of each cell type information corresponding 
to each drug treatment group. (Sheet 3) The cell number of each cell 
cycle information corresponding to each drug treatment group. (Sheet 
4–14) Differentially expressed genes detected in each cell type for HCC 
cells with different drug treatment. Yellow labels indicate specific 
marker genes of cell clusters. Genes are selected by log foldchange 
> 0.25, Bonferroni-adjusted p-value < 0.1, expressed in at least 15% of 
cells in either population (Seurat FindAllMarkers). Log fold change is 
calculated as arithmetic mean of log10 cpm values of one population 
minus the arithmetic mean of log10 cpm values of the second, and fold 
change is 10log_foldchange. P-values were calculated by the Wilcoxon 
rank sum test. Table  S3: Molecular mechanisms elucidation at the 
single-cell level. (Sheet 1–3) Differentially expressed genes detected in 
each cell cluster for HCC cells with HY treatment. Genes are selected by 
log foldchange > 0.25, Bonferroni-adjusted p-value < 0.1, expressed in at 
least 15% of cells in either population (Seurat FindAllMarkers). Log fold 
change is calculated as arithmetic mean of log10 cpm values of one pop-
ulation minus the arithmetic mean of log10 cpm values of the second, 
and fold change is 10log_foldchange. p-Values were calculated by the 
Wilcoxon rank sum test. (Sheet 4) The information of hub genes in HCC 
cells with HY treatment. (Sheet 5) The information of enriched motif in 
HCC cells with HY treatment. (Sheet 6) The information of regulon and 
target genes in HCC cells with HY treatment. (Sheet 7) The information 
of AUC cell thresholds in HCC cells with HY treatment. Data S1: 
Supporting Information. 
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