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ABSTRACT

Compared to classical drug screening, single-cell screening not only significantly enhances throughput but also provides richer
transcriptional response information. In this study, we employed the high-throughput and high-sensitive single-nucleus se-
quencing platform, snHH-seq, to screen clinical drug combinations with anti-hepatocellular carcinoma (HCC) activity. Single-
cell transcriptomics analysis revealed that the HY combination (HHT and YM155) exhibited the strongest suppression of tumour
cell proliferation, a finding validated by both in vitro and in vivo functional assays. Further investigation suggested that HY trig-
gers ferroptosis, as evidenced by rescue from cell death upon co-treatment with the ferroptosis inhibitor Fer-1. Subcluster analysis
identified distinct tumour cell subclusters' responses to HY treatment. A gene regulatory network analysis highlighted JUN as a
key regulator mediating proliferation inhibition, primarily active in the apoptotic cell subcluster. These findings illustrate how
integrating high-throughput screening with mechanistic dissection can accelerate the discovery of targeted drug combination
therapies, and offer a blueprint for precise interventions using pathway vulnerabilities and cellular heterogeneity in HCC.

1 | Introduction of novel cell subpopulations, identification of disease biomark-
ers, and reshaping of patient stratification [3-10].

The advent of single-cell sequencing technology has revolution-

ised life sciences research, much like the leap from conventional
microscopy to super-resolution imaging enabled unprecedented
precision in visualising biological structures [1, 2]. This technol-
ogy now empowers researchers to address fundamental ques-
tions with single-cell resolution, unlocking a very broad range of
applications such as construction of cell atlases for various spe-
cies, analysis of cellular heterogeneity within tissues, discovery

In the field of high-throughput drug screening, single-cell
sequencing technology offers distinct advantages over tra-
ditional bulk transcriptomic or phenotypic approaches. One
key advantage is high-throughput detection, allowing a single
experiment to test multiple drugs across different doses, time
points, concentrations, and combinations. Moreover, it cap-
tures rich transcriptional responses information, revealing
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drug-targeted subpopulations, cluster-specific transcriptional
changes, pathway perturbations, and dose-response spectra.
Critically, this approach eliminates batch effects by reducing
operational errors between experiments and reduces costs by
consolidating screening into a unified workflow. For instance,
McFarland et al. [11] leveraged single-cell RNA sequenc-
ing technology (scRNA-seq) to achieve high-throughput,
multi-dimensional analysis of cancer cells' transcriptional
responses to drug perturbations. Srivatsan et al. [12] treated
three tumour cell lines with 188 different drugs, capturing
approximately 650,000 single-cell transcriptomes in a single
experiment, systematically revealing the mechanisms of ac-
tion for multiple types of drugs using sci-Plex. Furthermore,
single-cell sequencing technology is widely applied in the
mechanistic elucidation of precision medicine for disease
treatment. In cervical cancer research, scientists delineated
eight cell types and five subpopulations of malignant epithe-
lial cells, validated PLOD2 as a prognostic gene with thera-
peutic potential [13]. In the study of muscle regeneration, Feng
et al. [14] revealed that Zn-DHM treatment increased the ex-
pression of M2 macrophage markers and enhanced the pro-
liferation and differentiation capacity of muscle stem cells by
single-cell profiling [14].

Globally, hepatocellular carcinoma (HCC) is one of the most
malignant tumours with high incidence and mortality rates,
posing a significant threat to human health [15-17]. Due to
its covert progression and rapid development, most patients
are diagnosed at end-stage, resulting in low surgical resec-
tion rates, limited therapeutic efficacy, and poor prognosis.
Empirical evidence has shown that combination targeted ther-
apies have emerged as a promising strategy to address these
challenges [18, 19]. A study involving 47 end-stage HCC pa-
tients demonstrated that the combination of sintilimab (anti-
PD-1 antibody) and apatinib (VEGFR2 inhibitor) as a first-line
treatment achieved good anti-tumour efficacy and safety [20].
Similarly, research on 63 HCC patients showed that the com-
bination of tyrosine kinase inhibitors (TKIs) and anti-PD-1
antibodies significantly improved clinical outcomes for most
patients [21, 22]. Additionally, clinical drugs originally used
for haematological malignancies are also being expanded to
the treatment of liver cancer [23]. For instance, arsenic tri-
oxide is the first-line therapy for acute promyelocytic leukae-
mia and is approved for advanced primary liver cancer [24].
Mitoxantrone, which was originally used to treat leukaemia,
lymphoma, and other hematologic cancers, has expanded its
indications to include solid tumours such as liver cancer and
bladder carcinoma [25]. However, these drugs have notable
limitations. For example, arsenic trioxide may elevate trans-
aminase levels during liver cancer treatment, necessitating
the concurrent use of liver-protective agents and close mon-
itoring of liver function. Such side effects, combined with the
potential emergence of drug resistance, restrict their clinical
application [26]. There is an urgent need for novel drugs or op-
timised combination therapies to overcome these limitations
and expand treatment accessibility. In this context, single-
cell sequencing technology holds promise for expediting the
development and optimised combination of drugs for HCC,
addressing drug screening challenges by identifying effective
drug combinations and understanding the mechanisms of
drug resistance at single-cell resolution.

We have developed a high-throughput and highly sensitive
single-nucleus RNA sequencing method called snHH-seq [27].
This approach integrates random primers and a pre-indexing
strategy on a droplet microfluidic platform, enabling total
RNA detection in single nuclei from clinically frozen samples.
Species-mixing experiments demonstrated that snHH-seq pro-
duces high-fidelity single-cell libraries with a doublet rate no
higher than 0.8%. Unlike poly(A)-based 10X Chromium, snHH-
seq achieves uniform coverage across gene bodies and allows
tracing of mutations at single-cell resolution in clinical speci-
mens. When applied to tumour samples, snHH-seq effectively
depletes cytoplasmic rRNA without additional removal steps
and efficiently captures nascent RNA with intron retention.
Compared to Microwell-seq, snHH-seq detects a higher pro-
portion of protein-coding transcripts, transcription factors, In-
cRNAs, non-polyadenylated genes, and sncRNAs, while nuclear
isolation yields lower cellular stress signals and longer transcript
capture.

In this study, we utilized snHH-seq, a high-throughput and
high-sensitivity single-cell sequencing platform, to systemati-
cally screen clinical compounds for their anti-HCC activity. We
uncovered a novel combination therapy regimen—HHT and
YM155 (designated HY)—that synergistically exerted the most
potent inhibitory effect on cellular proliferation. The potent
anti-tumor efficacy of HY was validated through comprehen-
sive in vitro and in vivo functional experiments. Importantly,
single-cell resolution analysis revealed the heterogeneous
transcriptional response to HY treatment across HCC cellu-
lar subpopulations and elucidated its underlying molecular
mechanisms. Together, this study not only establishes HY as a
promising novel combination therapy regimen for HCC but also
provides mechanistic insights at the single-cell level, advancing
our understanding of precision oncology approaches for liver
cancer treatment.

2 | Materials and Methods
2.1 | Cell Culture and Reagents

Human hepatocellular carcinoma HepG2 cells were sourced
from the Zhijiang Laboratory (Hangzhou, China) without
mycoplasma contamination. The HepG2 cells were cultured
in DMEM with 10% FBS and 1% Penicillin and Streptomycin
solution. Cells were incubated in a humidified atmosphere
incubator of 5% CO, at 37°C. Cladribine (T2558), homohar-
ringtonine (T3380), azacitidine (T1339), cytarabine (T1272),
venetoclax (T2119), sepantronium bromide (T2111), selinexor
(T6106), ruxolitinib (T1829), panobinostat (T2383), idarubicin
hydrochloride (T6010), daunorubicin (T1511L), ferrostatin-1
(T6500), necrostatin-1 (T1847), Z-VAD(OH)-FMK (T7020),
and T-5224 (T5416) were purchased from TargetMol (Boston,
United States).

2.2 | Cell Growth Inhibition Assay
Cells (5% 103 cells/well) were seeded in 96-well plates, cul-

tured overnight to allow cell attachment, and treated with
different drug compounds. After 48h of treatment, 10 uL of
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CCK-8 dye was added into each well to a final concentration
(v/v) of 10% and incubated for another 2h. Subsequently, the
absorbance (OD) was measured at 450nm by the SPARK mi-
croplate reader of the multi-wavelength measurement sys-
tem (TECAN, Switzerland). Cell growth inhibition rate was
evaluated as the ratio of the absorbance of the treated sam-
ples to that of the negative control samples and analyzed by
GraphPad Prism 8.0.2 software. All experiments were carried
out in triplicate.

Dose-response curves and IC50 calculations were also per-
formed using GraphPad Prism 8.0.2 software. The method-
ology involved the following steps: Cell viability values at
multiple specific concentrations were input into the software.
The X-axis was converted to a logarithmic scale. By selecting
Analyse > Nonlinear Regression (curve fit) from the toolbar,
the [Inhibitor] versus normalized response under the Model
of Dose-Response-Inhibition category was applied for data
analysis.

2.3 | Colony Forming Assay

Cells were seeded in 6-well plates at 1 x 10° cells/well and in-
cubated overnight. The cells were next treated with different
drug compounds. The culture medium was changed every
3-4days until there were colonies visible to the naked eye
(about 14 days). After that, the culture solution was discarded,
4% paraformaldehyde was added to the wells and the cells
were fixed for 10 min. After fixation, the cells were washed
with distilled water and stained with crystal violet staining
solution for 10 min. After staining, the staining solution was
removed through repeated washing. Photos were taken and
the formation of cell clones in each group was compared by
using Image J.

2.4 | Apoptosis Assay

Cells were seeded in a 96-well clear bottom black plate at a
density of 5x10? cells/well and cultured overnight. Following
attachment, cells were treated with different drug compounds.
The control group was treated with complete medium only.
Each treatment group had three replicates. After treatment for
48h, 1uL Hoechst 33342, 5uL PI, and 5puL FITC-Annexin V
were added to each well. Apoptosis in each group was evaluated
and analyzed by Operetta CLS High Content Screening reader
(PerkinElmer, United Kingdom). The Excitation/Emission
wavelengths for Hoechst 33342, FITC-Annexin V, and PI were
350/461nm, 494/518 nm, and 535/617 nm, respectively.

2.5 | FCM Analysis

Cells were seeded in a 6-well plate at a density of 1x10° cells/
well and cultured overnight. Following attachment, cells were
treated with different drug compounds. The control group was
treated with complete medium only. After treatment for 48h,
cells were stained in PBS supplemented with 2% fetal bovine
serum (FBS) at 4°C for 30min with Annexin V-FITC and PI.
Stained cells were washed once with PBS supplemented with 2%

FBS and analyzed using the BD LSR Fortessa (New York, United
States). The proportion of positive/negative cells with the same
mean fluorescence intensity was represented.

2.6 | Real-Time Cell Proliferation Analysis

HepG2 cells were seeded in accompanying 96-well plates at a
density of 2x 103 cells/well, cultured overnight to allow cell at-
tachment, and treated with different drug compounds. The value
of the cell proliferation signal was detected by the Intelligent
Cell Real-time Monitoring System (Shanghai, China) according
to the User Operation Manual.

2.7 | Single-Cell Screening

HepG 2 cells were seeded in a 6-well plate at a density of 1x 10°
cells/well and cultured overnight. Following attachment, cells
were treated with different drug compounds. The control group
was treated with complete medium only. After treatment for
48h, cells were collected and snHH-seq was performed for
single-cell screening [27]. The general experimental workflow
for snHH-seq is as follows: Isolate cell nuclei, perform counting,
and suspend them in a reverse transcription mixture (RT mix).
For a 96-well plate reaction, 110x RT mix was prepared: 55uL
10mm dNTP, 484 uL RT buffer, 55uL RNA Inhibitor (Vazyme),
55uL Reverse Transcriptase, 341 uL. Wash Buffer. The reverse
transcription kit was included in the VITAPilote-EFT1200 kit
(Cat # R20122124) ordered from M20 Genomics. Both nuclei-RT
mix (< 50,000 nuclei, 9L per well) and 10 um well-specific bar-
coded RT primers (1 uL per well) were distributed to each well of
the 96-well plate and stirred gently with the pipette tip. The re-
action mix was incubated with the thermal cycling: (8°C for 125,
15°C for 455, 20°C for 455, 30°C for 30s, 42°C for 2min)x 10cy-
cles, 42°C for 45min. After the reaction, all nuclei were col-
lected, mixed, and washed using PBST (PBS, 0.05% Tween 20)
three times to remove the residual primers. After washing, nu-
clei were suspended in TdT mixture (100,000-1,000,000 nuclei
per reaction, 39 uL nuclei in PBST, 5uL 10X TdT buffer (NEB),
5uL CoCl2 (NEB), 0.5uL 100mm dATP (Invitrogen), 0.5 uL TdT
enzyme (NEB)). The TdT reaction mix was incubated at 37°C
for 30min. After the reaction, nuclei were washed using PBST
three times. The nuclei were counted and diluted to 2000-8000
nuclei h—1 using OptiPrep (Stem Cell). DNA extension reaction
mixture was prepared (for 80 uL): 40 uL ddH20, 16 uL thermo-
pol buffer, 6uL 10mm dNTP, 6 uL BST 2.0 Warmstart (NEB),
6 uL RnaseH (NEB), 6 L. USER (NEB). Nuclei, 2 X DNA exten-
sion reaction mixture (M20 Genomics, VITAPilote-EFT1200
kit), and barcoded beads were encapsulated into droplets using
the microfluidic platform. All the required reagents for the drop-
let reaction can be ordered from M20 Genomics company. The
flow rates: 200uLh—1 for nuclei/reaction mixture; 500uLh—1
for oil; 50uLh—1 for beads. The mean value of droplet volume
is 0.48nL. The droplets (20-50 uL per tube) were incubated at
37°C for 1h, 50°C for 30 min, 60°C for 30min, 75°C for 20 min.
Then the droplets were broken by mixing with equal amounts
of 20% PFO (1H,1H,2H,2HPerfluoro-1-octanol, Sigma). The
supernatant was collected after centrifuging and purified with
1.2XDNA Clean Beads (Vazyme) and eluted in 40 uL ddH20.
Two rounds of PCR were performed to amplify cDNA and add
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sequence adapters. The amplified libraries were purified with
0.8 X DNA Clean Beads and quantified using Qubit (Invitrogen).
Circularization was performed to obtain a sequencing nanob-
all library for MGI DNBSEQ using VAHTS Circularization Kit
for MGI (Vazyme, NM201). Library sequencing was performed
using DNBSEQ-T7 with paired-end reads of 100 or 150 bp.

2.8 | Single-Cell Data Preprocessing

For sequencing library, the poly-A tail was trimmed from each
raw sequencing read using Cutadapt. Subsequently, real cells
were identified based on the number of reads per cell, utilising a
manually defined minimal read cutoff determined by the results
of the UMI-tools whitelist function. Reads were then aligned to
the GRCh38 reference genome using the STAR 2-pass mode,
and only uniquely mapped reads were retained. Each read was
assigned to its corresponding gene using the “gene” tag within
the GRCh38 GTF by employing feature Count. The digital gene
expression (DGE) was generated using the UMI tools count
function. Low-quality cells were filtered out using thresholds
for UMIs (200 <nCount_UMI < 2500) and mitochondrial gene
count (percent mt<50%). Genes detected in fewer than 0.25%
of the cells were removed. Following this quality control and
data preprocessing, 46,901 high-quality cells were collected for
analysis, with an average UMI count of 681 and an average gene
count of 332.

2.9 | Clustering of Single-Cell Data Matrix

Seurat [28] was used to perform clustering analysis of single-cell
data. DGE data were used as inputs. Cells from the pre-processed
data and genes expressed in more than three cells were selected
for further analysis. Filtered data were In(CPM/100+ 1) trans-
formed, and the number of UMI and the percentage of mitochon-
drial gene content were regressed out. The resulting clustering
results were visualised using Uniform Manifold Approximation
and Projection (UMAP). The default Wilcoxon rank-sum test
was used by running the FindAllMarkers function in Seurat to
find differentially expressed markers in each cluster. The heat
map produced by the DoHeatmap function is one basis for judg-
ing the quality of clustering. The dot plot map produced by the
DotPlot function is performed to show the specific gene expres-
sion in each subpopulation with different drug treatment.

2.10 | Regulon Activity Analysis

To determine the ‘on/off” activity of each regulon in each cell
type, we used area under curve (AUC) scores for each regulon
as a threshold to binarize the regulon activity scores by SCENIC
[29]. The protocol consists of three stages: (1) coexpression
modules are inferred using a regression per-target approach
(GRNBoost2); (2) the indirect targets are pruned from these
modules using cis-regulatory motif discovery (cisTarget); (3)
the activity of these regulons is quantified via an enrichment
score for the regulon’s target genes (AUCell). The regulon ac-
tivity t-SNE maps were created using the function tsneAUC in
the R package SCENIC with the binary regulon activity ma-
trix. To connect regulons with cell types, we used the Wilcoxon

rank-sum test to identify cell-type-specific regulons with AUC
score matrices.

211 | TF Regulatory Network Inference

An analytical strategy [30] has been developed for inferring TF
regulatory networks in single-cell RNA-seq, and we applied this
method to our snHH-seq dataset. The goal of this analysis is to
identify potential regulatory links between TFs and their target
genes based on patterns observed in a single-cell dataset. This
analysis can be broken down into five key steps: (1) compute de-
noised metacell expression profiles from the single-cell dataset;
(2) scan gene promoters for the presence of TF motifs; (3) model
gene expression as a function of TF expression; (4) assemble TF
regulons and regulatory networks; (5) downstream analysis of
TF regulatory networks. Open-source implementation of this
TF regulatory network inference algorithm could be obtained
from hdWGCNA R package [31].

2.12 | Statistical Analysis

In Figure 1B,C, the statistical significance of hepatocellular car-
cinoma cell viability following treatment with drug concentra-
tionsof 12.5, 25, 50, and 100 nM was evaluated using an unpaired
two-tailed Student's t-test. In Figure 1E, following treatment
of HepG2 cells with HHT, YM155, Pano, IDA, and DNR, the
two-tailed Student's t-test was applied to assess differences in
cell number, FITC-Annexin V fluorescence intensity, and PI
fluorescence intensity. Data are presented as mean +SD (n=3).
Significance levels are indicated as follows: *p <0.05, **p <0.01,
**%p <0.001. In Figure 3A,B, statistical significance for both cell
number and growth inhibition was assessed by the two-tailed
Student's t-test. Specific comparisons are indicated as follows:
*p <0.05, **p <0.01 versus the negative control group; #p <0.05,
##p <0.01 versus the HHT alone group; $p<0.05, $$p<0.01
versus the YM155 alone group; %p <0.05, %%p < 0.01 versus the
Pano alone group; &p<0.05, &&p<0.01 versus the IDA alone
group. In Figure 3E, the statistical significance of clone num-
ber was determined by the two-tailed Student's t-test (*p <0.05,
**p <0.01, ***p <0.001). In Figure 3L, the statistical significance
of cell viability was also determined by the two-tailed Student's
t-test (*p <0.05).

3 | Results

3.1 | Drug Screening Identified Compounds That
Effectively Inhibit HCC Cell Proliferation

The efficacy of drugs used clinically for malignant haemato-
logical diseases in treating solid tumours remains an area wor-
thy of further exploration. In this study, we integrated classical
high-content screening platforms with scRNA-seq technologies
to identify drug combinations that effectively inhibit the prolif-
eration of HCC cells (Figure 1A). We first conducted an in vitro
inhibition assay on HCC cells using targeted agents that have
been clinically applied for the treatment of leukaemia (Table S1).
Systematic analysis of clinical compounds acting on HCC cells
revealed significant cytostatic effects by CdA, HHT, YM155,
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FIGURE1 | Drug screening identified compounds that effectively inhibit HCC cell proliferation. (A) Design framework diagram of this study,
which includes four parts: Primary screening, single-cell screening, functional validation, and mechanism research. (B) Cell viability percentage
(%) of different concentrations of drug against HepG2 cell line. Cells were seeded in a 96-well plate and treated with 0.25, 0.5, 1, and 2uM drug for
48h, and the cell viability percentage was detected with CCK-8 kit. (C) Cell viability percentage (%) of HHT, YM155, Pano, IDA, and DNR against
HepG2 cell line. Cells were seeded in a 96-well plate and treated with 12.5nM, 25nM, 50nM, and 100nM drug for 48h, and the cell viability per-
centage was detected with CCK-8 kit. The dose-response curves were performed using GraphPad Prism 8.0.2 software. The half-maximal inhib-
itory concentration (IC50) refers to the concentration of a drug that induces 50% apoptosis in cells. (D) Representative images of cell apoptosis in
various groups. Different drugs were treated on HepG2 cells for 48h, and then apoptosis was detected by Hoechst 33342/FITC-Annexin V/PI triple
staining. The images were collected by an Operetta CLS HCS reader. Merged images were the composition of images of the same field from different
channels. (E) Cell number, fluorescence intensity of FITC-Annexin V and PI in HepG2 cells treated by HHT, YM155, Pano, IDA, and DNR. Data
are presented as mean = SD from three independent experiments (n = 3). Statistical comparisons are performed using unpaired two-tailed Student's
t-test. Significance levels are denoted as follows: *p <0.05, **p <0.01, ***p <0.001. The absence of an asterisk (*) indicates no significant difference.

SXR, Pano, IDA and DNR, while AZA, AraC, VEN and Rux
showed no significant changes in inhibiting HCC cell viability
(Figure 1B). The IC50 value serves as a measure of a drug's abil-
ity to induce apoptosis—the stronger the induction capability,
the lower the numerical value. Then, we adjusted the concen-
tration gradients for subsequent cell proliferation assays. The
results indicated that HHT, YM155, Pano, IDA, and DNR ex-
hibited potent anti-cancer activity at lower concentrations, with
IC,, values of 57.2, 103.0, 58.57, 118.2, and 163.1 nM, respectively
(Figure 1C and Figure S1A). AZA, AraC, VEN, and Rux contin-
ued to show no significant changes in inhibiting HCC cell viabil-
ity even at higher concentrations (Figure S1B).

To further investigate the inhibitory effects, a high-content cell
imaging system was employed to analyse HCC cells treated with
HHT, YM155, Pano, IDA, and DNR. The results revealed a sig-
nificant reduction in HCC cell viability, alongside a substantial
increase in both early and late apoptotic indices. Specifically,
IDA demonstrated the most profound effect on cell proliferation
and early apoptosis, reducing cell counts by 4.18-fold compared
to the control and increasing the early apoptotic index by 14.40-
fold. HHT exerted the greatest impact on late apoptosis, which
increased by 22.37-fold relative to the control (Figure 1D,E).
Following treatment with HHT, YM155, Pano, IDA, and DNR,
both the size and number of HCC cell colonies were markedly
diminished. Notably, DNR exhibited the most pronounced in-
hibitory effect on clonogenic survival, nearly abrogating visible
colony formation and reducing colony numbers by 14.96-fold
compared to the control (Figure S1C,D). Together, classical drug
screening identified clinical agents capable of effectively inhib-
iting the clonogenicity and proliferative potential of HCC cells
in vitro.

3.2 | Single-Cell Screening Uncovered the
Heterogeneous Transcriptional Response
Characteristics

Based on preliminary screening and functional experimental
validation, HHT, YM155, Pano, IDA, and DNR were identified
with significant inhibitory effects on the proliferation of HCC
cells. Since both IDA and DNR are anthracycline drugs with
similar mechanisms of action and metabolic pathways, and
IDA exhibited slightly stronger inhibitory efficiency than DNR,
only IDA was selected for subsequent drug combination screen-
ing. Utilizing the previously developed high-throughput and

high-sensitive single-cell sequencing platform snHH-seq [27], a
single experiment simultaneously analyzed the single-cell tran-
scriptomes of HCC cells treated with the following conditions:
untreated control, HHT, YM155, Pano, IDA, HHT&YM155(HY),
HHT&Pano(HP), HHT&IDA(HI), YM155&Pano(YP),
YM155&IDA(YI), and Pano&IDA(PI) (Figure 2A). Following
quality control and data preprocessing, a total of 46,901 cells
were collected, with an average UMI count of 681.1 and an av-
erage gene count of 331.58 (Figure S2A,B, and Table S2). A key
quality control measure was to set the mitochondrial proportion
threshold of <50% (Figure S2C). Recent evidence suggests that
malignant tumor cells have elevated baseline mitochondrial
gene expression, and high mitochondrial content often marks
viable, functionally distinct subpopulations rather than low-
quality cells [32]. Consistent with this, our drug treatments on
HCC cells induced cell death that was accompanied by a further
increase in mitochondrial proportion.

Subsequently, unsupervised clustering analysis of these cells
after dimensionality reduction identified four subpopulations
(Figure 2B). Among them, cluster 1 (C1), defined as proliferation-
related cells (PC), was characterised by marker genes such as
GPC6, XIST, AMOT, SLIT2, and RPS2. Cluster 2 (C2), defined
as apoptosis-related cells (AC), expressed genes such as PDE3A,
MIR100HG, FTHI, and SLC7A5. Cluster 0 (C0) and cluster 3 (C3)
lacked distinctive marker genes. Further hdAWGCNA [30] co-
expression analysis of the single-cell data revealed that the data
could be divided into two modules: M1 and M2, corresponding
to PC and AC, respectively. CO did not belong to either module
and was closer to C1, thus being defined as primary prolifera-
tive cells (PPC). C3, which exhibited low expression of both M1
and M2, was defined as intermediate cells (IC) (Figure 2C,D,
and Figure S2D,E). Next, we analysed the changes in cell type
proportions and cell cycle distribution across various treatment
groups of HCC cells. Results revealed that drug treatments did
not affect the cell types or cell cycle phases but significantly
influenced the cell type proportions. Compared to the control
and other treatment groups, the HY combination exhibited the
most pronounced inhibitory effect. Specifically, the proportion
of PC in HCC cells drastically decreased from 46.15% to 5.29%,
while the proportion of AC increased from 23.42% to 37.04%
(Figure 2E and Figure S2F).

Additionally, we conducted an analysis of transcriptional het-
erogeneity in HCC cells treated with individual drugs and drug
combinations (Figure 2F). Results demonstrated that treatment
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FIGURE 2 | Single-cell screening uncovered the heterogeneous transcriptional response characteristics. (A) Schematic of the basic workflow for
snHH-seq. (B) Uniform manifold approximation and projection (UMAP) embedding of the HCC cells analyzed in this study. Colour-coded for differ-
ent drug treatment (left) and cell type (right). (C) Dot plot showing representative module expression in each cluster of HCC cells. Average expression
represents the average expression level of a specific gene within a defined cell population. Percent expressed refers to the proportion of cells within
the given population that show detectable expression of the gene. (D) Heatmap showing representative gene expression in each cluster of HCC cells.
(E) Bar chart showing the percentage of cell number in HCC cells with different drug treatment. (F) Dot plot showing representative gene expression
in HCC cells with different drug treatment. Modules A-K are defined based on the overall expression patterns of these 20 marker genes. Each module
is composed of co-expression patterns involving one or multiple genes. Average expression represents the average expression level of a specific gene
within a defined cell population. Percent expressed refers to the proportion of cells within the given population that show detectable expression of the
gene. H, HHT; Y, YM155; P, Pano; I, IDA; HY, HHT&YM155; HP, HHT&Pano; HI, HHT&IDA; YP, YM155&Pano; YI, YM155&IDA; PI, Pano&IDA;

PPC, primary proliferative cells; PC, proliferation-related cells; AC, apoptosis-related cells; IC, intermediate cells.

with HHT and combination regimens HY, HI, and HP signifi-
cantly suppressed the expression of CREB5 and SLIT2 in HCC
cells (module K), aligning with existing studies identifying these
genes as potential therapeutic targets in oncology [33, 34]. HHT
specifically induced upregulation of genes including YWHAE,
PKM, FTH1,SLC7A5, PLEC, and CPSI (module D), whereas such
effects were not observed in the HY, HI, or HP combination.
AMOT exhibits dual roles in tumorigenesis, either promoting
or inhibiting tumour growth via modulation of signalling path-
ways such as Hippo and Wnt/B-catenin [35]. Single-cell data re-
vealed that IDA markedly increased AMOT expression, whereas
HY and HP combinations reduced its expression (module F),
indicating that while these agents phenotypically suppress HCC
growth, their underlying mechanisms exhibit distinct pathway
divergences. Moreover, POLR2A is the largest subunit of RNA
polymerase II, responsible for transcribing all protein-coding
genes. Dysfunction or dysregulated expression of POLR2A may
disrupt transcriptional regulation in cancer cells. Liu et al. have
found that in colorectal cancer, loss of POLR2A could lead to
transcriptional dysregulation, thereby promoting tumour pro-
gression [36]. In our study, HY treatment was observed to upreg-
ulate POLR2A expression (module A), though the mechanisms
require further exploration. In summary, single-cell sequencing
technology identified the transcriptional heterogeneity of HCC
cells in response to drug treatments and screened out the drug
combination HY with the most potent inhibitory efficiency.

3.3 | Functional Experiments Validated the
Inhibitory Efficiency of Drug Combination

To validate the drug combinations' inhibitory efficiency iden-
tified through single-cell sequencing, we further conducted
functional experiments. High-content statistical analysis and
cell viability assays confirmed that the pairwise combina-
tions of HHT, YM155, Pano, and IDA exhibited significantly
greater efficacy than individual drugs (Figure 3A,B). Notably,
the combination of HY exhibited the best performance, with a
growth inhibition rate 1.8 times higher than HHT alone and 1.7
times higher than YM155 alone, indicating a strong synergis-
tic inhibitory effect (Figure 3B). Flow cytometry analysis also
confirmed that the drug combinations were significantly more
effective than individual drugs. In early and late apoptosis, the
HY showed the strongest inhibitory effects. Specifically, in early
apoptosis, the apoptotic ratio of the HY was 1.58 times higher
than HHT and 1.38 times higher than YM155. In late apopto-
sis, the proportions were 3.12% for HHT, 3.44% for YM155,

and 4.6% for the HY, demonstrating significant synergistic in-
hibition (Figure 3C). In the colony formation assay, the HY re-
mained the most effective, reducing colony formation by 7.88
times compared to HHT and by 6.15 times compared to YM155
(Figure 3D,E). These in vitro experimental results demonstrate
that the drug combinations exhibit significantly greater cytotox-
icity and anti-proliferative activity against HCC cells compared
to individual drugs. Notably, the HY performed optimally. This
finding was corroborated by real-time cell analysis (RTCA)
impedance-based assays, where the proliferation signals were
most markedly reduced in the HY combination compared to
HHT or YM155 alone (Figure 3F).

To further investigate the anti-tumour efficacy of the HY, we
conducted in vivo xenograft studies. Results showed a signifi-
cant reduction in tumour burden, including tumour volume and
tumour weight, following treatment with the HY compound
combination. A statistically significant difference in tumour
volume was observed after 14 days, while no significant changes
were noted in body weight among the mice (Figure 3G-J).
Haematoxylin and eosin staining revealed well-preserved nu-
clear structure, deep staining, and uniform cell distribution
with rare necrotic areas in the control group. In contrast, the
HY-treated HCC cells exhibited enlarged and deformed nu-
clei, indistinct cellular boundaries, and an expanded necrotic
region within the tumour tissue (Figure 3K). Consistent with
the in vitro findings, the in vivo studies further demonstrated
that the HY drug combination effectively inhibited HCC tumour
growth.

In our single-cell sequencing analysis of gene expression in
response to drug treatments, we found that the effects of com-
pounds in HCC changed the expression level of Ferritin Heavy
Chain 1 (FTHI), suggesting the action of the drug may be related
to ferroptosis (Figure 2F). To validate this, we co-treated HCC
cultures with HHT or YM155 and inhibitors targeting distinct
cell death pathways: Fer-1 (ferroptosis inhibitor), Nec-1 (necro-
ptosis inhibitor), and Z-VAD-FMK (apoptosis inhibitor). The re-
sults of cell viability assays showed that treatment with Fer-1
(100nM) significantly rescued HCC cells from death induced
by HHT (16.18%) or YM155 (6.19%) (Figure 3L and Figure S3A).
Similarly, real-time cell analysis (RTCA) impedance-based
proliferation assays demonstrated that proliferation rates were
significantly restored in Fer-1 co-treated groups (Figure 3M
and Figure S3B). Interestingly, in HHT or YM155-treated HCC
cells, Fer-1 had the greatest inhibitory effect on early and late
apoptosis, whereas Z-VAD-FMK had the least inhibitory effect
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FIGURE 3 | Functional experiments validated the inhibitory efficiency of drug combination. (A) Cell number of different combinations of drugs
against HepG2 cell line. Cells were seeded in a 96-well plate for 48h, and the cell number was detected by an Operetta CLS HCS reader. (B) Cell
growth inhibition percentage (%) of different combinations of drugs against HepG2 cell line. Cells were seeded in a 96-well plate for 48h, and the
cell growth inhibition percentage (%) was detected with CCK-8 kit. (C) Early apoptosis percentage (top) and late apoptosis percentage (bottom)
of different combinations of drugs against HepG2 cell line. Cells were seeded with different drug combinations in a 6-well plate for 48h, and the
Annexin V-FITC and PI expression was detected by LSR Fortessa flow cytometry. (D) Colony formation assay was conducted to investigate tumour
growth after treatment with different drug combinations for 14 days. The colonies were visualised with the images. (E) The corresponding histogram
showed the colony numbers. (F) Real-time signal analysis of cell proliferation after treatment with HHT, YM155, and HHT&YM155. (G) Images of
tumours from control and HY-treated mice groups. (H) Statistical analysis of tumour volumes of mice in the control and HY treatment groups along
with time. (I) Statistical analysis of tumour weight of mice in the control and HY treatment groups. (J) Statistical analysis of body weight of mice in
the control and HY treatment groups along with time. (K) Representative images of the HE staining in tumour sections, scale bar: 50 uM. (L) Cell
viability percentage (%) of HHT, HHT&Fer-1, HHT&Nec-1, and HHT&Z-VAD-FMK against HepG2 cell line. Cells were seeded in a 96-well plate
for 48 h, and the cell viability percentage was detected with CCK-8 kit. (M) Real-time signal analysis of cell proliferation after treatment with HHT,
HHT&Fer-1, HHT&Nec-1, and HHT&Z-VAD-FMK. (N) Early apoptosis percentage (left) and late apoptosis percentage (right) of HHT, HHT&Fer-1,
HHT&Nec-1, and HHT&Z-VAD-FMK against HepG2 cell line. Cells were seeded with different drug combinations in a 6-well plate for 48h, and
the Annexin V-FITC and PI expression was detected by LSR Fortessa flow cytometry. H, HHT; Y, YM155; P, Pano; I, IDA; HY, HHT&YM155; HP,
HHT&Pano; HI, HHT&IDA; YP, YM155&Pano; YI, YM155&IDA; PI, Pano&IDA. Data were presented as mean +SD (n=3) and comparisons were
performed with unpaired two-tailed Student's t-test. *p <0.05, **p <0.01, ***p < 0.001 versus negative control group; “p <0.05, **p <0.01 versus HHT
alone group; *p<0.05, $5p <0.01 versus YM155 alone group; #“p<0.05, “*p<0.01 versus Pano alone group; ¥p<0.05, #¢p<0.01 versus IDA alone

group, ns, no significance.

(Figure 3N and Figure S3C). Collectively, these results suggest
that HHT and YM155 may trigger ancillary apoptotic signal-
ling; their primary anti-proliferative effect in HCC is mediated
through ferroptosis, as evidenced by the selective rescue with
Fer-1. This underscores ferroptosis induction as a key mecha-
nism of action for these compounds.

3.4 | Molecular Mechanisms Elucidation at
the Single-Cell Level

Through comprehensive in vitro and in vivo functional valida-
tion, we confirmed that the HY drug combination effectively
inhibits the proliferation of HCC cells. To elucidate its mech-
anisms basis at single-cell resolution, we performed UMAP
clustering and co-expression analysis on single-cell data from
control and HY-treated samples, revealing three transcription-
ally distinct subclusters: PC, AC, and PPC. These subclusters
aligned with two co-expression modules: M1 (enriched in PC),
and M2 (enriched in AC), while PPC lacked module association
(Figure 4A,B and Figure S4C). Additionally, differential gene
expression analysis across subclusters demonstrated that HY
treatment universally upregulated apoptosis-related genes (e.g.,
MT-ND2, MT-ATP6) and downregulated proliferation-related
genes (e.g., XIST, RPS2). Interestingly, HY induced opposing
expression trends in mitochondrial ribosomal genes: MT-RNR1
(a core component of the mitochondrial small subunit) was sup-
pressed, while MT-RNR2 (a structural component of the large
subunit) was elevated, and the specific mechanism requires
further exploration. HY treatment also selectively inhibited the
expression of IncRNA NEATI in the AC and PPC populations,
but not in the PC population. This is consistent with existing
research that NEAT regulates miR-362-3p and MIOX in the fer-
roptosis signalling pathway in liver tumours [37] (Figure 4C),
further supporting ferroptosis as a key HY-driven mechanism.
Moreover, by characterising signature genes associated with
ferroptosis-related lipid metabolism pathways and iron homeo-
stasis, we found that HY treatment of HCC cells downregulates

the expression of genes such as glutathione peroxidase 4 (GPX4)
[38], dihydroorotate dehydrogenase (DHODH) [39], and trans-
ferrin receptor (TFRC) [40], while upregulating ACSL4, a criti-
cal inducer of ferroptosis [41] (Figure S4A). This dysregulation
exhibited distinct, cell-type-specific patterns (Figure S4B). The
suppression of GPX4 was a consistent response observed across
all three cell types (AC, PPC, PC). TFRC was most significantly
downregulated in AC, while SNX5, USP7, and SLC3A2 showed
greater downregulation in PC. ACSL4 upregulation was specific
to PPC and PC. Although HY treatment modulates the expres-
sion of key ferroptosis-related genes in a cell-type-specific man-
ner, the overall pathway enrichment shift for the core ferroptosis
pathway was subtle. Together, these single-cell insights reveal
that HY coordinately triggers apoptosis, inhibits proliferation,
and dysregulates mitochondrial and ferroptosis-associated net-
works, with subpopulation-specific effects shaping its therapeu-
tic efficacy.

To delineate the transcriptional mechanism underlying HY-
treated effects, we constructed a gene regulatory network (GRN)
from single-cell data of HY-treated HCC cells using SCENIC
[29]. The transcription factor (TF) regulon activity heatmap
displayed the activity distribution and clustering patterns of
each regulon (Figure 4D, Figure S4D and Table S3). Different
TF regulons showed distinct regulatory patterns: HOXD10 ex-
clusively regulated the PC cluster; BRCA1, CREB3L2, JUN, and
MEIS1 co-regulated both PC and PPC clusters; CREB5, FOXP1,
HDAC?2, and RARB primarily governed PC/PPC clusters with
minimal regulation of the AC cluster; KLF5, ATF1, TEADI,
and TFAP2A mainly targeted the AC cluster while retaining
influence on PC/PPC clusters; whereas NFATC3, GTF2IRDI,
RXRA, THRB, and ARID5B specifically regulated the AC
cluster (Figure 4E and Figure S4E). Within this network, we
observed key ferroptosis-related TFs with cell-type-specific ac-
tivity. These included TFAP2A [42], and KLF5 [43] in AC, TCF4
[44] and ATF4 [45] in PPC, E2F1 [46] in PC, as well as BRCA1
[47] in both PPC and PC. Notably, BRCA1 and E2F1 are known
to play a context-dependent dual role in ferroptosis regulation.
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FIGURE 4 | Molecular mechanisms elucidation at the single-cell level. (A) UMAP embedding of the HCC cells analysed in this study. Colour-
coded for control and HY treatment (top) and cell type (bottom). (B) Dot plot showing representative module expression in each cluster of HCC cells
with HY treatment. Average expression represents the average expression level of a specific gene within a defined cell population. Percent expressed
refers to the proportion of cells within the given population that show detectable expression of the gene. (C) Dot plot showing representative gene
expression in each cell type with HY treatment. Average expression represents the average expression level of a specific gene within a defined cell
population. Percent expressed refers to the proportion of cells within the given population that show detectable expression of the gene. (D) Heatmap
showing the activity distribution of each regulon in HCC cells with HY treatment. (E) Violin plot showing representative regulon in each cluster of
HCC cells with HY treatment. (F) Bar plot showing the top predicted target genes for each TF, split by whether the target gene was positively (right)
or negatively (left) correlated with the TF based on gene expression. The regulatory importance score from XGBoost is plotted on the x-axis, and tar-
get genes are ranked by their importance scores. (G) The TF network showing regulatory links originating from our TF of interest in (F). The nodes
represent TFs and genes, and the edges represent inferred regulatory relationships. The selected TF is shown as a diamond, other TFs are shown as
triangles, and genes are shown as circles. The size of each node corresponds to the outdegree in the network. The colour of the edges represents the
strength of the TF-gene interaction based on the Pearson correlation of gene expression. The colour of each node represents the number of links to the
selected TFs. GO enrichment analysis of differentially expressed genes in PC (left) and AC (right) subpopulation. HY, HHT&YM155; PPC, primary

proliferative cells; PC, proliferation-related cells; AC, apoptosis-related cells.

GO analysis of their target genes (Table S3) revealed a strong
association with cell cycle processes: 28 targets of BRCA1 were
enriched in the “regulation of G2/M transition of mitotic cell
cycle” (GO:0010389), while 986 targets of E2F1 were enriched
in “mitotic cell cycle” (GO:0000278). Given that cell cycle arrest
has a potent suppressive effect on ferroptosis [48], HY-induced
cell cycle progression may counteract ferroptosis defense
mechanisms by modulating the activity of these dual-role TFs
in PC and PPC. That is HY may activate a compensatory, pro-
ferroptotic program in PC and PPC by modulating dual-role TFs
linked to cell cycle progression.

Further functional annotation of regulon targets highlighted
bifurcated effects: HOXD10, FOXP1, and FOXP2 regulated
multiple tumour proliferation-related genes (e.g., SOX9, MEISI,
AMOT), while TEAD1 and TFAP2A controlled apoptosis-
associated genes (e.g., PDE3A, KYNU, POU2F3) (Figure 4F).
Network topology analysis further exhibited dynamic crosstalk
and differential regulatory intensities between regulons, reflect-
ing the complexity of HY-induced GRN in HCC cells (Figure 4G).
The regulatory network is divided into two main components.
On the left, the focus is on the PC cluster, where GO enrichment
analysis reveals associations with pathways such as ribonucle-
oprotein complex biogenesis and ribosome biogenesis. On the
right, the analysis centres on the AC subpopulation, with GO
enrichment highlighting pathways including positive regulation
of protein localization and wound healing.

Notably, differential regulon analysis identified JUN as the pre-
dominant regulator mediating HY-induced proliferation inhi-
bition, predominantly active in the AC cluster, consistent with
differential gene expression patterns (Figure S4F). JUN formed
intricate networks with MYC, POU2F1, RORA, and other reg-
ulators to amplify HCC cell proliferation arrest (Figure S4G).
To validate this, we administered the JUN-specific inhibitor
T-5224 (10uM) in HCC cells following HY-mediated suppres-
sion of their in vitro proliferation. Cell viability assays demon-
strated that T-5224 effectively rescued cell death induced by HY,
achieving a rescue rate of 31.99% (Figure S4H). Similarly, flow
cytometric analysis revealed that T-5224 treatment most effec-
tively counteracted HY-induced early and late apoptosis in HCC
cells (Figure S4I). These experimental findings corroborate the
single-cell RNA sequencing data, collectively indicating that

JUN mediates the inhibitory effect of HY on the proliferation
of HCC cells. Collectively, our GRN analysis delineated key
cluster-specific regulons underlying HY's effects on HCC cells,
providing a foundation for precision diagnosis and treatment in
clinical hepatology.

4 | Discussion

In this study, we employed high-throughput single-cell screen-
ing and functional validation assays to demonstrate that the
novel combination therapy HY (HHT&YM155) effectively in-
hibits HCC cell proliferation, with mechanistic insights eluci-
dated at the single-cell level. While HHT, a ribosome inhibitor,
is known to induce the rapid turnover of several key oncopro-
teins (e.g., c-MYC, MCL-1) and potently triggers apoptosis in
leukaemia cells, it exhibits limited efficacy against solid tumour
cells [49, 50]. Qin et al. [51] demonstrated that activation of the
JNK-USP36-Snaill axis drives HHT resistance in solid tumours
and that combinatorial inhibition of this axis synergizes with
HHT to inhibit solid tumour proliferation and migration. In our
data, single-cell transcriptomic analyses and functional experi-
ments consistently confirm that the drug combinations achieve
significantly greater therapeutic efficacy than either drug alone.
Notably, our findings reveal that conventional haematologi-
cal malignancies drugs (e.g., AZA, AraC, VEN, Rux) exhibit
markedly reduced efficacy in HCC cells, which may be due to
substantial intrinsic molecular distinctions between haemato-
poietic tumours and solid tumours [52].

The snHH-seq platform offers distinct advantages in drug
screening by: (1) transcending conventional single-phenotype
assessments through leveraging single-cell resolution to un-
cover molecular mechanisms of drug action; (2) enabling par-
allel analysis across multiple time points and dosage conditions
via pre-index technology; and (3) establishing correlations be-
tween short-term transcriptional responses and long-term cel-
lular viability. Additionally, this platform employs a random
primer strategy during reverse transcription to capture total
transcriptomes at single-cell resolution. This allows for com-
prehensive analysis of transcriptional changes in response to
drug treatment at a single-cell level. Our snHH-seq analysis
identified multiple IncRNAs functionally associated with HY

12 of 15

Cell Proliferation, 2025

85U9017 SUOWILLOD SAITE8ID 9|qedt|dde au) Aq pauienof afe sapiLe WO ‘N Jo SN 10} Akeiq i 8uluO A3[IAA UO (SUONIPUOI-PUE-SLLB) W0 AB (1M ARe1q 1 puUO//SdNY) SUORIPUOD PUe SWie 1 84} 89S *[9202/20/60] U0 Aeid 1T auljuo A8|IM ‘8YTOL IS TTTT OT/I0P/L0D A8 1M Ake.q e UO//:Stiy Wo.j pepeojumoq ‘0 ‘¥8TZS9ET



treatment response in HCC. For instance, NEATI, a well-
characterised oncogenic IncRNA [53], exhibited cluster-specific
regulation post-HY treatment, with marked upregulation in
the AC cluster but downregulation in the PC cluster, suggest-
ing its potential involvement in cell death. This aligns with re-
cent findings demonstrating that NEAT1's tumour-suppressive
function in acute myeloid leukaemia (AML) [54]. MALATI,
an abundant, evolutionarily conserved ~7 to 8-kb IncRNA lo-
calised to nuclear speckles and overexpressed in cancers, has
long been associated with poor prognosis and metastasis across
malignancies [55]. However, its oncogenic versus tumour-
suppressive roles remain contentious. Our single-cell data
revealed that HY significantly suppresses MALATI expres-
sion, particularly in the AC cluster, supporting its potential
oncogenic role in HCC progression. Furthermore, additional
IncRNA candidates including YWHAE, XIST, and LIPE-ASI
emerged as promising precision targets for HCC therapy.
These findings, coupled with the emerging understanding of
the complex roles of IncRNAs in cancer biology, highlight the
importance of studying IncRNA regulation in drug response
for developing next-generation anticancer therapies.

The vast amount of data generated by high-throughput single-
cell sequencing demands the power of deep learning to unlock
its full potential. In future studies, we might leverage artificial
intelligence to further delve into the data presented in this study,
identifying more precise commonalities in drug mechanisms
and cell-type-specific response patterns, thereby providing ro-
bust data support for mechanistic elucidation and predictive
modeling of therapeutic efficacy.
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Supporting Information

Additional supporting information can be found online in the
Supporting Information section. Figure S1: Drug screening identified
compounds that effectively inhibit HCC cell proliferation. (A) Images of
HepG2 cell morphology. (B) Cell viability percentage (%) of AZA, AraC,
VEN, and Rux against HepG2 cell line. Cells were seeded in a 96-well
plate and treated with 1.25uM, 2.5uM, 5uM, 10uM drug for 48h, and
the cell viability percentage was detected with CCK-8 kit. (C) Colony
formation assay was conducted to investigate tumour growth after
treatment with HHT, YM155, Pano, IDA, and DNR for 14 days. The col-
onies were visualised with the images. (D) The corresponding histo-
gram showed the colony numbers. Data were presented as mean +SD
(n=3) and comparisons were performed with unpaired two-tailed
Student's t test. *p < 0.05. The absence of a * mark indicates no statistical
significance. Figure S2: Single-cell screening uncovered the heteroge-
neous transcriptional response characteristics. (A) UMAP embedding
of the HCC cells analysed in this study. Colour-coded for specific drug
treatment (left) and cell type (right). (B) UMAP embedding of the HCC
cells analysed in this study. Colour-coded for RT barcode. (C) The violin
plot of chrMT% distribution. (D) HHOWGCNA analysis of HCC cells with
different drug treatment identified two modules. (E) UMAP embedding
of the HCC cells analysed in this study. Colour-coded for module 1 (left)
and module 2 (right). (F) Bar chart showing the percentage of cell cycle
in HCC cells with different drug treatment. H, HHT; Y, YM155; P, Pano;
I, IDA; HY, HHT&YM155; HP, HHT&Pano; HI, HHT&IDA; YP,
YM155&Pano; YI, YM155&IDA; PI, Pano&IDA; PPC, primary prolifer-
ative cells; PC, proliferation-related cells; AC, apoptosis-related cells;
IC, intermediate cells. Figure S3: Functional experiments validated the
inhibitory efficiency of drug combination. (A) Cell viability percentage
(%) of YM155, YM155&Fer-1, YM155&Nec-1, and YM155&Z-VAD-FMK
against HepG2 cell line. Cells were seeded in 96-well plate for 48 h, and
the cell viability percentage was detected with CCK-8 kit. (B) Real-time
signal analysis of cell proliferation after treatment with YM155,
YM155&Fer-1, YM155&Nec-1, and YM155&Z-VAD-FMK. (C) Early
apoptosis percentage (top) and late apoptosis percentage (bottom) of
YM155, YM155&Fer-1, YM155&Nec-1, and YM155&Z-VAD-FMK
against HepG2 cell line. Cells were seeded with different drug combina-
tion in 6-well plate for 48 h, and the Annexin V-FITC and PI expression
was detected by LSR Fortessa flow cytometry. Data were presented as
mean + SD (n=3) and comparisons were performed with unpaired two-
tailed Student's t test. *p<0.05, ns, no significance. Figure S4:
Molecular mechanisms elucidation at the single-cell level. (A) Dot plot
showing the expression of signature genes associated with ferroptosis in
HCC with (HY) or without (Control) HY treatment. Average expression
represents the average expression level of a specific gene within a de-
fined cell population. Percent expressed refers to the proportion of cells
within the given population that show detectable expression of the gene.
(B) Dot plot showing the expression of signature genes associated with
ferroptosis across different cell types with (HY) or without (C) HY treat-
ment. Average expression represents the average expression level of a
specific gene within a defined cell population. Percent expressed refers
to the proportion of cells within the given population that show detect-
able expression of the gene. (C)UMAP embedding of the HCC cells with
HY treatment. Colour-coded for module 1 (left) and module 2 (right).
(D) Bar chart showing the number of cells per regulon (left) and the
number of regulons per cell (right). (E) Dot plot showing the representa-
tive regulon in each cluster of HCC cells with HHT treatment. Regulon
specificity score (RSS) measures the specificity score of a regulon across
different cell types. Z score assesses the expression level of an individual

gene relative to its background distribution, measured in standard devi-
ations. (F) Scatter plot showing the effect sizes from the differential reg-
ulon test for the positive (x-axis) and negative (y-axis) regulons. For the
TFs in the top left corner, the negatively-correlated target genes are up-
regulated of AC cluster in HY treatment relative to control (left), and the
negatively-correlated target genes are up-regulated of in HY treatment
relative to control (right). Each point represents a TF, coloured by the
module assignment in (C). Diamonds represent TFs that are also signifi-
cantly differentially expressed, while circles are not differentially ex-
pressed. TFs that did not reach significance are opaque while the
significant TFs have a black outline. The number of significantly differ-
entially expressed regulons in each quadrant of the plot are labelled in
the corners. (G) The TF network showing regulatory links originating
from JUN. The nodes represent TFs and genes, and the edges represent
inferred regulatory relationships. The selected TF is shown as a dia-
mond, other TFs are shown as triangles, and genes are shown as circles.
The size of each node corresponds to the outdegree in the network. The
colour of the edges represents the strength of the TF-gene interaction
based on the pearson correlation of gene expression. The colour of each
node represents the number of links to the selected TFs. (H) Cell viabil-
ity percentage (%) of HY and HY + T5224 against HepG2 cell line. Cells
were seeded in a 96-well plate for 48h, and the cell viability percentage
was detected with CCK-8 kit. (I) Early apoptosis percentage (upper) and
late apoptosis percentage (below) of HY and HY + T5224 against HepG2
cell line. Cells were seeded with different drug combination in 6-well
plate for 48 h, and the Annexin V-FITC and PI expression was detected
by LSR Fortessa flow cytometry. HY, HHT&YM155; PPC, primary pro-
liferative cells; PC, proliferation-related cells; AC, apoptosis-related
cells. Data were presented as mean+SD (n=3) and comparisons were
performed with unpaired two-tailed Student's t-test. *p < 0.05, **p < 0.01,
**%p <0.001. Table S1: Drug screening identified compounds that effec-
tively inhibit HCC cell proliferation. The information of drugs used in
this study, including full name, abbreviation, specification, solvent and
aliquot concentration. Table S2: Single-cell screening uncovered the
heterogeneous transcriptional response characteristics. (Sheet 1) The
RT barcode information corresponding to each drug treatment group.
(Sheet 2) The cell number of each cell type information corresponding
to each drug treatment group. (Sheet 3) The cell number of each cell
cycle information corresponding to each drug treatment group. (Sheet
4-14) Differentially expressed genes detected in each cell type for HCC
cells with different drug treatment. Yellow labels indicate specific
marker genes of cell clusters. Genes are selected by log foldchange
>0.25, Bonferroni-adjusted p-value <0.1, expressed in at least 15% of
cells in either population (Seurat FindAllMarkers). Log fold change is
calculated as arithmetic mean of logl0 cpm values of one population
minus the arithmetic mean of logl0 cpm values of the second, and fold
change is 10log_foldchange. P-values were calculated by the Wilcoxon
rank sum test. Table S3: Molecular mechanisms elucidation at the
single-cell level. (Sheet 1-3) Differentially expressed genes detected in
each cell cluster for HCC cells with HY treatment. Genes are selected by
log foldchange > 0.25, Bonferroni-adjusted p-value <0.1, expressed in at
least 15% of cells in either population (Seurat Find AllMarkers). Log fold
change is calculated as arithmetic mean of log10 cpm values of one pop-
ulation minus the arithmetic mean of logl0 cpm values of the second,
and fold change is 10log_foldchange. p-Values were calculated by the
Wilcoxon rank sum test. (Sheet 4) The information of hub genes in HCC
cells with HY treatment. (Sheet 5) The information of enriched motif in
HCC cells with HY treatment. (Sheet 6) The information of regulon and
target genes in HCC cells with HY treatment. (Sheet 7) The information
of AUC cell thresholds in HCC cells with HY treatment. Data S1:
Supporting Information.
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